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A Theory

A.1 Additional details of the two period model

This section provides additional detail for and results from the two-period model of the electricity section presented
in Section 2 of the paper.

A.1.1 Assumptions underlying model results

In deriving necessary conditions for the two-period model of the electricity sector, I will make the following simpli-
fying assumptions:

• Demand in each period is exogenous, perfectly inelastic, and varies (𝑄0 ≠ 𝑄1). This assumption guarantees
there exists a level of the minimum generation requirement 𝑄𝐻 such that the constraint binds in one period
and not in the other.

• Non-negativity constraints never bind on fossil fuel generation. This assumption rules out realizations of exoge-
neous model parameters where the reserve constraint does not bind.

• The discount factor is one. This assumption is for notational simplicity. In the case where 𝛽 < 1 the social
planner will set the present value of marginal costs equal across all periods, but the qualitative conclusions are
the same.

A.1.2 Effect of minimum generation constraints on producer surplus

This model also provides insight to how minimum generation constraints may impact the producer surplus in each
sector of the electricity market. As a prelude, I will highlight some results required to analyze surplus. First, in a
competitive market, if the quantity of fossil fuel generation is greater than zero the price paid for electricity will be
the marginal cost of increasing electricity supply which is simply the marginal cost of fossil fuel generation.

Second, a marginal increase in the minimum hydroelectric generation constraint will increase𝑄𝐻
𝑖 and decrease

𝑄𝐻
𝑗 by that samemargin. (Since the total reservoir constraint binds hydroelectric production, the implicit derivatives

of the optimal quantities with respect to the constraint are 1 and -1 respectively.) Since demand is perfectly inelastic,
this implies that same marginal increase in the minimum generation constraint will decrease 𝑄𝐹

𝑖 and increase 𝑄𝐹
𝑗

(implicit derivatives are -1 and 1 respectively).
Considering the surplus accruing to the fossil fuel generating sector, the producer surplus is the sum of revenues

minus the sum of costs:

𝑃𝑆𝐹 = 𝑄𝐹
𝑖 ⋅ 𝜕𝑇 𝐶

𝜕𝑄𝐹 ∣
𝑄𝐹

𝑖

+ 𝑄𝐹
𝑗 ⋅ 𝜕𝑇 𝐶

𝜕𝑄𝐹 ∣
𝑄𝐹

𝑗

− 𝑇 𝐶(𝑄𝐹
𝑖 ) − 𝑇 𝐶(𝑄𝐹

𝑗 ) (1)

The marginal change in surplus with respect to a change in the minimum generation constraint is:

𝜕𝑃𝑆𝐹

𝜕𝑄𝐻 = 𝑄𝐹
𝑖 ⋅ 𝜕2𝑇 𝐶

𝜕(𝑄𝐹 )2 ∣
𝑄𝐹

𝑖

− 𝑄𝐹
𝑗 ⋅ 𝜕2𝑇 𝐶

𝜕(𝑄𝐹 )2 ∣
𝑄𝐹

𝑗

(2)

Since fossil fuel generators behave competitively, the second derivative of the total cost function is the derivative of
the fossil fuel supply function. I can express the marginal change in fossil fuel producer surplus as a function of the
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fossil fuel supply elasticities (𝜀𝐹
𝑡 ) in each period:

𝜕𝑃𝑆𝐹

𝜕𝑄𝐻 = 𝜀𝐹
𝑖 − 𝜀𝐹

𝑗 (3)

This is a straightforward and intuitive result. In the face of an increase in the strigency of a minimum hydroelectric
generation constraint, producer surplus will increase for fossil fuel generators when supply is more elastic in period 𝑖,
where the minimum generation policy binds, than in period 𝑗. In that case, the increase in hydroelectric generation
in period 𝑖 (and corresponding decrease in fossil fuel generation) has a smaller effect on prices than the required
increase in fossil fuel generation in period 𝑗.

It is also useful to consider how a change in the minimum generation constraint may impact the surplus earned
by hydroelectric generators. Hydroelectric generation has zero marginal cost, thus the producer surplus of the
hydroelectric sector is:

𝑃𝑆𝐻 = 𝑄𝐻
𝑖 ⋅ 𝜕𝑇 𝐶

𝜕𝑄𝐹 ∣
𝑄𝐹

𝑖

+ 𝑄𝐻
𝑗 ⋅ 𝜕𝑇 𝐶

𝜕𝑄𝐹 ∣
𝑄𝐹

𝑗

(4)

This leads to marginal surplus with respect to a change in the binding minimum generation constraint:

𝜕𝑃 𝑆𝐻

𝜕𝑄𝐻 = 𝜕𝑇 𝐶
𝜕𝑄𝐹 ∣

𝑄𝐹
𝑗

− 𝜕𝑇 𝐶
𝜕𝑄𝐹 ∣

𝑄𝐹
𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟

Marginal Effect

+ 𝑄𝐻
𝑗 ⋅ 𝜕2𝑇 𝐶

𝜕(𝑄𝐹 )2 ∣
𝑄𝐹

𝑗

− 𝑄𝐻
𝑖 ⋅ 𝜕2𝑇 𝐶

𝜕(𝑄𝐹 )2 ∣
𝑄𝐹

𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Inframarginal Effect

(5)

The term in the first set of brackets is the marginal effect on revenues from reallocating a unit of water from
a period of high prices to a period of lower prices due to the minimum generation requirement. This difference is
always negative.

The second term is the change in inframarginal revenues. Reallocating water decreases prices (and revenues
for all inframarginal units) in the period where hydroelectric generation is bound by the constraint (𝑖) and increases
prices in the other period (𝑗). In each period, the change in inframarginal revenues is the inframarginal quantity
times that change in price.

The sign of this effect depends on the convexity of the fossil fuel cost function and the allocation of inframarginal
generation. For example, if the second derivative of the cost function is increasing then prices increase more in
period 𝑗 than they fall in period 𝑖 from a marginal change in the minimum hydroelectric generation constraint. If
the inframarginal quantity of hydroelectric generation in period 𝑗 is sufficiently large compared to period 𝑖 then total
revenues will increase as well.1 Whether the net change in revenues is positive or negative in this case depends on
both the third-order behavior of the cost function, the allocation of hydroelectric generation between periods 𝑖 and
𝑗, and the direct effect on prices.

A.2 Infinite Horizon Model of the Electricity Market

The two period model of the electricity sector provides a strightforward model of the channels through which reg-
ulations on the output of hydroelectric generators will spill over to fossil fuel generators. In reality, hydroelectric
dams optimize the discharge of water in their reservoir over longer time horizons. Here I present a fully dynamic

1In this case the minimum generation constraint is forcing the hydroelectric generators to behave like a third-degree price-discriminating
monopolist, withholding quantity from a market where demand is inelastic.
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discrete-time model of the electricity generation sector. Using this model, I am able to derive necessary conditions
for present-value cost minimization that have the same economic interpretation as the simpler two-period model.
The setup of the model is quite similar to the two-period model, and I use identical terminology where appropriate.

A.2.1 Electricity Supply

The market for the production of electricity occurs over discrete time periods 𝑡 ∈ {0, 1, 2, … }. Electricity can be
generated from one of two sources: fossil fuel generators (𝐹 ) and hydroelectric generators (𝐻). Electricity from
either source are perfect substitutes in the output market.

In each period 𝑡, fossil fuel generators can generate non-negative quantity of electricity𝑄𝐹
𝑡 ≥ 0. The fossil fuel

sector has non-negative, increasing, strictly convex cost functions (𝑇 𝐶𝐹 (𝑄𝐹
𝑡 )) which are identical in each period.

Changing the output of fossil fuel generation across periods is costly. In each period 𝑡, the fossil fuel sector
faces adjustment costs 𝐴𝐶(𝑄𝐹

𝑡−1, 𝑄𝐹
𝑡 ). Adjustment costs are continuous, twice differentiable, strictly convex and

minimized at zero whenever fossil fuel output output is constant across periods (𝐴𝐶(𝑞, 𝑞) = 0 ∀𝑞) (𝐴𝐶(𝑞, 𝑠) > 0
∀𝑞 ≠ 𝑠). These facts imply the following other properties of the adjustment cost function:

Lemma 1. For all 𝑞 in the support of 𝑄𝐹
𝑡−1 and 𝑠 in the support of 𝑄𝐹

𝑡 , the following are true:

1. 𝜕𝐴𝐶
𝜕𝑄𝐹

𝑡
∣
𝑞,𝑠

> 0 if 𝑞 < 𝑠

2. 𝜕𝐴𝐶
𝜕𝑄𝐹

𝑡
∣
𝑞,𝑠

< 0 if 𝑞 > 𝑠

3. 𝜕𝐴𝐶
𝜕𝑄𝐹

𝑡−1
∣
𝑞,𝑠

< 0 if 𝑞 < 𝑠

4. 𝜕𝐴𝐶
𝜕𝑄𝐹

𝑡−1
∣
𝑞,𝑠

> 0 if 𝑞 > 𝑠

Proof. Suppose 𝑞 = 𝑠 then by definition 𝐴𝐶(𝑞, 𝑠) is minimized and equal to zero. Choose some 𝑦 > 𝑠. Since 𝐴𝐶(⋅)
is convex2

𝐴𝐶(𝑞, 𝑠) − 𝐴𝐶(𝑞, 𝑦) ≥ 𝐷𝐴𝐶(𝑞, 𝑦) [ 0
𝑠 − 𝑦 ]

0 > 𝐴𝐶(𝑞, 𝑠) − 𝐴𝐶(𝑞, 𝑦) ≥ [ 𝜕𝐴𝐶
𝜕𝑄𝐹

𝑡−1
∣
𝑞

𝜕𝐴𝐶
𝜕𝑄𝐹

𝑡
∣
𝑠

] [ 0
𝑠 − 𝑦 ]

0 > (𝑠 − 𝑦) 𝜕𝐴𝐶
𝜕𝑄𝐹

𝑡
∣
𝑠

(𝑦 − 𝑠) 𝜕𝐴𝐶
𝜕𝑄𝐹

𝑡
∣
𝑠

< 0

Thus 𝜕𝐴𝐶
𝜕𝑄𝐹

𝑡
is strictly greater than zero. Proof of part two follows from choosing 𝑦 < 𝑠. Parts 3 and 4 follow from

choosing some 𝑥 < 𝑞 (Part 3) or 𝑥 > 𝑞 (Part 4).

Hydroelectric generators likewise choose a non-negative quantity of output subject to a capacity constraint
𝑄𝐻

𝑡 ∈ [0, 𝑄𝐻 ] in each period 𝑡. Hydroelectric generators have zero marginal cost, but face a “reserve constraint”
(𝑄𝐻

𝑡 ≤ 𝑅𝑡) which evolves over time by the law of motion𝑅𝑡+1 = 𝑅𝑡 −𝑄𝐻
𝑡 +𝐼𝑡 where 𝐼𝑡 represent reservoir inflows

between periods 𝑡 and 𝑡 + 1.
2Simon and Blume, Theorem 17.8.

Appendix A - 3



Additionally, a regulator exogenously sets hydroelectric “minimum generation constraints” which must be met
in both periods (𝑄𝐻

𝑡 ≥ 𝑄𝐻 ∀𝑡).3 If 𝑄𝐻 > 0 the non-negativity constraint on 𝑄𝐻
𝑡 is redundant and can be excluded.

In the case that the regulator sets no minimum generation requirement, I will set 𝑄𝐻 = 0 to serve as the non-
negativity constraint on hydroelectric generation.

A.2.2 Electicity Demand

Demand for electricity (𝑄𝑡) is exogenous and varies each period. Consistent with the nature of demand in wholesale
electricity markets, demand is perfectly inelastic in each period.4 The social planner chooses the quantity of hydro-
electric and fossil fuel generation each period which maximizes welfare, subject to non-negativity constraints, and
that total supply equal the inelastic demand (𝑄𝑡 = 𝑄𝐹

𝑡 + 𝑄𝐻
𝑡 ∀𝑡). Since demand is perfectly inelastic, the welfare

maximization problem is identical to the cost-minimization problem.

A.2.3 The Social Planner’s Problem (SPP)

The social planner observes demand for both periods and chooses the quantities of hydroelectric and fossil fuel
generation in each period that minimizes total costs subject to constraints. The social planner discounts future
payoffs with discount factor 𝛽.

In each period, the Social Planner observes state variables𝑄𝐷
𝑡 , 𝑄𝐹

𝑡−1, 𝑅𝑡, 𝐼𝑡 and chooses the value of the control
variables 𝑄𝐻

𝑡 and 𝑄𝐹
𝑡 that maximize the value function:

𝑉𝑡[𝑄𝐻
𝑡 , 𝑄𝐹

𝑡 |𝑄𝐷
𝑡 , 𝑄𝐹

𝑡−1, 𝑅𝑡, 𝐼𝑡] = −𝑇 𝐶(𝑄𝐹
𝑡 ) − 𝐴𝐶(𝑄𝐹

𝑡−1, 𝑄𝐹
𝑡 ) + 𝛽𝑉𝑡+1[𝑄𝐻

𝑡+1, 𝑄𝐹
𝑡+1|𝑄𝐷

𝑡+1, 𝑄𝐹
𝑡 , 𝑅𝑡+1, 𝐼𝑡+1] (6)

Subject to the following constraints (and Lagrange multiplier)

𝑄𝐹
𝑡 + 𝑄𝐻

𝑡 = 𝑄𝐷
𝑡 (𝑒𝑞)

𝑅𝑡+1 = 𝑅𝑡 + 𝑄𝐻
𝑡 + 𝐼𝑡 (𝑒𝑞)

𝑄𝐻
𝑡 ≥ 𝑄𝐻 (𝜆𝑡)

𝑄𝐻
𝑡 ≤ 𝑄𝐻 (𝛿𝑡)

𝑄𝐻
𝑡 ≤ 𝑅𝑡 (𝛾𝑡)

𝑄𝐹
𝑡 ≥ 0 (𝜙𝑡)

(7)

Substituting in equality constraints gives the Social Planner’s Lagrangian with a single control variable (𝑄𝐻
𝑡 ):

L = − 𝑇 𝐶(𝑄𝐷
𝑡 − 𝑄𝐻

𝑡 ) − 𝐴𝐶(𝑄𝐹
𝑡−1 − 𝑄𝐻

𝑡−1, 𝑄𝐷
𝑡 − 𝑄𝐻

𝑡 )+ (8)

𝛽𝑉𝑡+1[𝑄𝐻
𝑡+1|𝑄𝐷

𝑡+1, 𝑄𝐷
𝑡 , 𝑄𝐻

𝑡 , 𝐼𝑡+1]+

𝜆𝑡(𝑄𝐻
𝑡 − 𝑄𝐻) + 𝛿𝑡(𝑄

𝐻 − 𝑄𝐻
𝑡 ) + 𝛾𝑡(𝑅𝑡 − 𝑄𝐻

𝑡 ) + 𝜙𝑡(𝑄𝐷
𝑡 − 𝑄𝐻

𝑡 )

There are no externalities in this model and the quantities in the optimal solution to the SPP are identical to the
competitive equilibrium. I make additional assumptions to guarantee the existence of non-trivial, interior solutions
to the social planner’s problem.

3If electricity prices are greater than zero a dam will always choose to discharge water required by instream flow requirements through the
powerhouse and produce electricity. In this light instream flow requirements are identical to a minimum generation constraint.

4Wholesale electricity demand is derived from the demand of retail customers. In general, price signals from the wholesale market are
not communicated to retail consumers, making demand unresponsive to wholesale prices. See e.g., Puller (2002), Borenstein, Bushnell, and
Wolak (2002).
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Assumption 1. The space of feasible hydroelectric output levels is non-degenerate. Thus,

1. Minimum and maximum generation constraints at time 𝑡 permit more than one choice of 𝑄𝐻
𝑡 .

𝑄𝐻
𝑡 < 𝑄𝐻

𝑡 ∀𝑡

2. For any time range [𝑎, 𝑏] reserves and inflows are sufficient to satisfy the minimum generation constraint.
∑𝑏

𝑡=𝑎 𝑄𝐻
𝑡 ≤ 𝑅𝑎 + ∑𝑏

𝑡=𝑎 𝐼𝑡 ∀𝑎 < 𝑏

Assumption 2. The optimal level of fossil fuel generation is strictly positive in each period. 𝑄𝐹
𝑡 > 0 ∀𝑡

For each period 𝑡, the Lagrange multipliers 𝜆𝑡 can be interpreted as the shadow cost of a the minimum hydro-
electric generation constraint, 𝛾𝑡 is the shadow cost of the reserve constraint in the current period, 𝛿𝑡 is the shadow
cost of the maximum flow constraint on hydroelectric generation, and 𝜙𝑡 is the shadow cost of the non-negativity
constraint on fossil fuel generation.

The SPP’s Lagrangian has the following first order condition necessary for cost minimization:

𝜕𝑉𝑡
𝜕𝑄𝐻

𝑡
= 𝜕𝑇 𝐶

𝜕𝑄𝐹
𝑡

+ 𝜕𝐴𝐶
𝜕𝑄𝐹

𝑡
− 𝛽 𝜕𝑉𝑡+1

𝜕𝑅𝑡+1
+ 𝜆𝑡 − 𝛿𝑡 − 𝛾𝑡 + 𝜙𝑡 = 0 (FOC.1)

The following envelope conditions must also hold on the cost-minimizing path:

𝜕𝑉𝑡
𝜕𝑅𝑡

= 𝛽 𝜕𝑉𝑡+1
𝜕𝑅𝑡+1

+ 𝛾𝑡 (EC.1)

Recursively substituting into Condition (EC.1) gives the following expression for the envelope condition on reserves
at time 𝑡, which I will call Γ𝑡

𝜕𝑉𝑡
𝜕𝑅𝑡

=
∞

∑
𝜏=0

𝛽𝜏𝛾𝑡+𝜏 ≡ Γ𝑡 (EC.2)

This expression shows the net present value of relaxing the hydroelectric reserve constraint, assuming the optimal
path of discharges in the future. This is the true shadow value of water in period 𝑡 since an increase in reserves in
period 𝑡 may not change hydroelectric generation in period 𝑡 but caries the option of changing generation in the
future as well.

Substituting Condition (EC.2) into Condition (FOC.1) gives:

𝜕𝑇 𝐶
𝜕𝑄𝐹

𝑡
+ 𝜕𝐴𝐶

𝜕𝑄𝐹
𝑡

+ 𝜙𝑡 = Γ𝑡 − 𝜆𝑡 + 𝛿𝑡 (NC.1)

This expression has a clear economic interpretation. In each period 𝑡 the sum of the marginal cost of fossil fuel
generation, marginal adjustment costs, and the shadow cost of the non-negativity constraint on fossil fuel generation
must equal the shadow value of water minus the shadow cost of minimum flow constraints plus the shadow costs of
maximum flow constraints on hydroelectric generation.

The optimal dynamic behavior is made clear by subtracting Condition(NC.1) evaluated at time 𝑡 from the same
expression evaluated at time 𝑡 + 1 discounted by one period. This gives:

𝜕𝑇 𝐶
𝜕𝑄𝐹

𝑡
+ 𝜕𝐴𝐶

𝜕𝑄𝐹
𝑡

+ 𝜙𝑡 − 𝛽 [ 𝜕𝑇 𝐶
𝜕𝑄𝐹

𝑡+1
+ 𝜕𝐴𝐶

𝜕𝑄𝐹
𝑡+1

+ 𝜙𝑡+1] = 𝛿𝑡 − 𝜆𝑡 − 𝛽 [𝛿𝑡+1 − 𝜆𝑡+1] + 𝛾𝑡 (NC.2)
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Suppose non-negativity constraints on fossil fuel generation (Assumption 2), minimum generation constraints
on hydroelectric generation, and maximum generation constraints on hydroelectric generation do not bind in either
periods 𝑡 or 𝑡+1. Further assume the the reserve constraint does not bind in period 𝑡. Then Condition (NC.2) implies

𝜕𝑇 𝐶
𝜕𝑄𝐹

𝑡
+ 𝜕𝐴𝐶

𝜕𝑄𝐹
𝑡

= 𝛽 [ 𝜕𝑇 𝐶
𝜕𝑄𝐹

𝑡+1
+ 𝜕𝐴𝐶

𝜕𝑄𝐹
𝑡+1

] (9)

Thus, when constraints do not bind, the social planner chooses levels of hydroelectric generation that sets the
marginal cost of fossil fuel generation plus the marginal adjustment costs in period 𝑡 equal to the present value
of those costs in period 𝑡 + 1.

Suppose the regulator chooses to increase the minimum generation constraint such that it binds in period 𝑡 but
not in period 𝑡 + 1. Then, the condition above becomes

𝜕𝑇 𝐶
𝜕𝑄𝐹

𝑡
+ 𝜕𝐴𝐶

𝜕𝑄𝐹
𝑡

= −𝜆𝑡 + 𝛽 [ 𝜕𝑇 𝐶
𝜕𝑄𝐹

𝑡+1
+ 𝜕𝐴𝐶

𝜕𝑄𝐹
𝑡+1

] (10)

This implies the present value of marginal fossil cost plus adjustment costs will be lower in period 𝑡 than in period
𝑡 + 1. Due to the strict convexity of these functions, it must be that total costs increase.
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B Additional Background

B.1 Additional requirements of instream flow regulations

Beyond an absolute minimum rate of discharge, instream flow requirements for each dammay also specify additional
constraints on theminimumnumber and duration of substantially increased “pulsed flows”which are likewise a func-
tion of the water year type (WYT). An example of these regulations are shown in Table D.1. The primary motivation
for pulsed flows are to provide river conditions amenable to certain types of recreation, such as whitewater rafting.
However, some aquatic species respond positively to variation in river flows and environmental protection concerns
sometimes underlie these requirements as well. Identical to the minimum instream flow requirements, the pulsed
flow requirements are categorical, keyed to the WYT, and monotonically increasing in stringency as more water
becomes available. These additional requirements similarly reduce the set of allowed discharges for a hydroelectric
facility but vary systematically within days and weeks.

The combination of minimum and pulsed instream flow requirements represent a suite of policies which change
in concert and increase monotonically in stringency with the WYT. I refer to these requirements jointly as “instream
flow requirements” and all estimates represent the cost of the full suite of policies for each WYT.

B.2 Electricity generation technologies

Electricity generation consists of a range of technologies with heterogeneous attributes, each producing a perfectly
substitutable output: electricity. Due to the idiosyncrasies of wholesale electricity markets these differing attributes
make a combination of generation technologies the lowest-cost way of satisfying demand. From the perspective
of a cost-minimizing social planner, many attributes of each generation technology are substitutes. E.g., slightly
increasing the intermittency of electricity generation stock would increase the value a social planner would place
on non-intermittent resources. As shown in Archsmith et al. (2020), this implies that capacity of disparate genera-
tion technologies are complements, rather than substitutes. Understanding the complementary attributes of these
technologies merits a brief discussion. I will focus on fossil fuel, nuclear, renewables (such as wind and solar), and
hydroelectric, which make up the vast majority of generation capacity.

Fossil fuel-fired generators burn fuels, such as natural gas, to drive turbines either through direct action or
through boiling water to make steam. Increasing the level of output at these plants requires increasing the rate of
steam production and is costly, compared to steady-state operation. I demonstrate this graphically in Appendix Sec-
tion D.1. This means that, in periods where plants are rapidly increasing output, they are less efficient in converting
fuel into electricity. It is also important to note these plants do not benefit from increased efficiency when ramping
down; if anything, plants are also less efficient during the ramp-down phase. This implies increased variability in
output will strictly increase fuel consumption as compared to steady-state operation.

Nuclear power also accounts for a substantial portion of the electricity generated in California during the period
considered here. Nuclear power plants have very low marginal costs and typically serve “base load” by constantly
operating at their rated capacity, shutting down only for refueling, maintenance, or safety reasons. Adjustments to
output at nuclear plants are both costly and technically challenging due to the impact of xenon poisoning on reactor
operation.

Renewable generation technologies, such as wind and solar photovoltaics, have negligible marginal cost and
adjustment costs but the level of output is variable and determined by environmental conditions, not a plant operator.
Since output of these generation technologies cannot be increased in response to market conditions, these plants are
termed “non-dispatchable”. Recall that electricity supply and demand must balance at all times, with the bulk of
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the adjustments occurring on the supply side. If environmental conditions cause renewable generation to decrease
output, such as a cloud passing over a solar array, then other “dispatchable” generation must increase output to
compensate.

Hydroelectric dams, in contrast, are dispatchable and face no adjustment costs. Whenever called upon, these
dams can with minimal cost and over the course of minutes adjust output between zero and maximum capacity
limited only by the quantity of water in their reservoir. Hydroelectric generation is an important component of
cost-minimization in a electricity market with heterogeneous generation technologies. As residual demand for dis-
patchable generation varies, either from changes in demand or changes in the supply of non-dispatchable generation,
hydroelectric dams can costlessly adjust output and absorb the variability that would otherwise increase costs at fos-
sil fuel generators.

Variability in demand for fossil fuel generation clearly increases electricity generation costs, as illustrated in
Figure D.1. For each hour of weekdays in May of 2015 I compute total demand for fossil fuel electricity generation
(in black) and the average quantity of fuel required to produce a MW of electricity, called the heat rate, for fossil fuel
generation (in blue) for all facilities in California. Heat rates are the highest – plants are least efficient in converting
fuel into energy – when load is rapidly increasing.
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C Data and Methods

C.1 Data

This sections provides additional detail beyond the main manuscript.

C.2 Electricity Data

Electricity generation operations details: I obtain measurements of operation status, gross electricity generation,
quantity of fuel consumed, and emissions from fuel combustion for every fossil fuel-powered electricity generator
with a nameplate capacity of 25 MW or greater from the EPA’s Continuous Emissions Monitoring System (CEMS)
dataset. These data are available at the generating unit level with hourly resolution from 1997 to the present.

Electricity generator details: EIA Form 860 provides detailed physical characteristics for electricity generators
including location (latitude and longitude), ownership, fuel(s) consumed, generating technologies, emissions control
technologies, and operating status for all electricity generators with a nameplate capacity of 10 MW or greater. Data
provide annual generating-unit detail from 1990 to the present. Additional data on cooling water consumption are
available for 2014 and 2018 from the EIA’s “Thermoelectric cooling water data”.

Fuel consumption and net electricity generation: EIA Forms 923/920/906 provide monthly observations of fuel(s)
consumed and net electricity generation for all plants with a nameplate capacity of 50 MW through 2013. After 2013
data are provided annually for all plants, monthly for a random subsample (approximately 1/3 of all plants), with
monthly values imputed by the EIA for the remainder.

Electricity price and load: I utilize high-frequency load and price data for electricity supply and demand from the
California Independent System Operator (CAISO). These data include hourly load, imports and exports, hourly day-
ahead market prices, 15-minute hour-ahead market prices, and 5-minute real-time prices. All load data and pricing
data from 1998 through April 1, 2009 provide detail at the zone (NP15) level.5 Pricing data from April 1, 2009 to the
present are available at the node level and also provide aggregation to regions approximating the NP15 zone.

C.2.1 Reconstructed WYI

In its reporting, the California Department of Water Resources (CADWR) rounds the water year index (WYI) to the
nearest 0.1 prior to assigning the WYT designation. All analyses presented here account for the effective threshold
resulting from this rounding. For example, a WYI of 6.5 or less leads to a designation of “Dry” and over 6.5 to a
designation of “Below Normal”. Since my calculation of the WYI contains more than two significant digits, I assign
values strictly below 6.55 (which round to 6.5 or less) as “Dry” and 6.55 or greater (which round to 6.6 or more) as
“Below Normal” to replicate the assignment process used by CADWR.

Values of the reconstructed WYI and the corresponding WYT for each forecast month (February to May) and
the end of the water year (October) from 1990 to 2016 are shown in Table D.2.

5I am so far unable to obtain electricity prices from early 2003 to the start of 2005. CAISO does not publicly post price data for dates prior to
April 1, 2009 and was unable to provide accurate price data in response to my records availability request.
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C.2.2 Forecast Accuracy

The February, March, April, and May forecasts from Bulletin 120 appear to be unbiased estimators of actual end-of-
year runnoff in the Sacramento Valley. For each forecast month 𝑚 in year 𝑦 I estimate the end-of-year water year
index (based of actual flow through streamflow monitors) as a function of the current forecast of the the WYI or:

𝑊𝑌 𝐼𝑦,𝐸𝑂𝑌 = 𝛽𝑚
0 + 𝛽𝑚

1 𝑊𝑌 𝐼𝑦,𝑚 + 𝜀𝑦,𝑚 (11)

For each regression, Table D.3 shows the estimated slope, intercept, 𝑅2. Columns 4 and 5 show the F-statistic
and p-value of a Wald test that the null hypothesis the slope equals one and the intercept equals zero. Columns 6
and 7 show the mean difference and p-value of a paired t-Test of the forecast WYI and end-of-year WYI. The null
hypothesis of both tests are implied in the forecast WYI being an unbiased estimator of the end-of-year WYI.

C.3 Methods

C.3.1 Hydroelectric Dam Operations

The specific quantity of electricity generated is a function of turbine efficiency, the quantity of water that passes
through the turbines, and the distance between the top of the reservoir and the turbines (the hydraulic head). Since
the level of the reservoir changes very little over the course of days, dams choose output at any moment strictly by
choosing the quantity of water to discharge.

C.3.2 Measurement of heat rate deviations

The outcome variable of interest in this analysis is heat rate, a measure of efficiency in electricity.6 Electricity gen-
erating units exhibit a range of heat rates when operating under ideal conditions and at peak efficiency.7 Since
the efficiency of electricity generation depends on the mix of generating units actually deployed at a given time, I
consider deviations from from the expected heat rate averaged across all units in operation at each point in time.

I compute the system-wide deviation from expected heat rate as follows. For each fossil-fuel powered generat-
ing unit (𝑖) in CEMS I compute the average heat rate (𝐻𝑅𝑖𝑚) in each month (𝑚).8 For a given generating unit, heat
rates tend to decrease (improve) over time and may vary systematically throughout the course of the year.9 Using
the monthly-average heat rates, I compute a monthly expected heat rate for the generating unit using plant-specific
intercepts and linear time trends.10

𝐻𝑅𝑖𝑚 = 𝛽𝑖
0 + ̂𝛽𝑖

1 ⋅ 𝑡 (12)

6A generating unit’s heat rate the the quantity of fuel burned, generally measured in millions of BritishThermal Units (mmBTU) to standardize
across fuels with disparate heat content per unit of weight or volume, divided by the quantity of electricity generated, generally measured in
megawatt-hours (MWh). Intuitively, the heat rate is a the amount of energy input required to generate on MWh of electricity output.

7For example, a natural gas-powered combustion turbine may have a heat rate around 10 mmBTU/MWhwhereas a combined cycle gas turbine
may have a heat rate as low as 8 mmBTU/MWh when operating at peak efficiency. The efficiency of electricity generating units has also been
systematically increasing over time and may vary throughout the year as well.

8For some types of generating units, particularly CCGTs, only a portion of gross electricity generation is reported in CEMS. Using monthly
data from Form EIA-860, I scale monthly gross generation reported in CEMS to the total monthly net generation from EIA-860 (which measures
all electricity delivered to the grid by each plant). Further details of this adjustment are included in the Appendix.

9Identification of the RDD in this context relies substantially on across-year changes in the WYI, consequently, I cannot include plant-level
year fixed effects as it would limit identification to only within-year variation in heat rates.

10There are a number of possible models for computing expected heat rates. I considered models with polynomial time trends up to order five
with and without month-of-year fixed effects, polynomial month-of-year trends up to order 5 with a linear time trend, and month-of-year fixed
effects coupled with linear time trends. I evaluated the fit of each model using k-fold cross validation holding out one year of data at a time. The
selected model had the best performance (lowest MSE) predicting out of sample and is also one of the more parsimonious models.
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Finally, for each hour 𝑡 plant 𝑖 is in operation I compute heat rate deviation (𝐻𝑅𝐷𝑖𝑡) as the percentage deviation
of the plant’s actual heat rate from its expected heat rate.

𝐻𝑅𝐷𝑖𝑡 = 𝐻𝑅𝑖𝑡 − 𝐻𝑅𝑖𝑚
𝐻𝑅𝑖𝑚

(13)

Appendix C - 3



D Results and Robustness

D.1 Fossil fuel generators face adjustment costs

This is illustrated in Figure D.2, which shows the heat rate of two typical natural gas-fired electricity generating units
as a function of the change in output level over the previous hour. The heat rate is the quantity of thermal energy,
measured in mmBTU, used by a plant to produce one MWh of electricity. Heat rates vary by the technology used
for converting fossil fuels into electricity and the specific operating conditions of the plant. Lower values of the heat
rate represent more efficient operation.

D.2 Minimum flow policies are binding

One should only expect to see effects of instream flow requirements on efficiency in electricity markets if those re-
quirements are actually binding the decisions of hydroelectric dams. I test whether stream flow below dams changes
in response to policy changes using an event study framework. In the simplest case, one would compute average
stream flow at times before and after the point where new policy regimes take effect and compare the change in
stream flow when the WYT increases, stays the same, or decreases. Releases from hydro units, however, vary sys-
tematically with days, within weeks, and over the course of the year. Additionally, the within-stream variation in
flow differs substantially across streams and within stream as the total forecast runoff varies. To account for these
facts, for each hydro unit 𝑖 at time 𝑡 I compute a standardized stream flow with mean zero and standard deviation
one ( ̄𝐹𝑖𝑡). For each policy change date (𝑒) possible change in the water year type (𝑤) I compute the time since the
event (𝑠) and estimate the following regression:

̄𝐹𝑒𝑖𝑠 = ∑
𝑤∈𝑊

∑
𝑠∈𝑆

𝛽𝑤𝑠 + 𝑓𝑖 (𝑊𝑌 𝐼𝑖,𝑒, 𝑊𝑌 𝐼𝑖,𝑒+1) (14)

Where 𝑓𝑖(⋅, ⋅) is a unit-specific flexible polynomial of the continuous WYI forecast that determines the WYT of both
the old and new policy regimes. Figure D.3 plots the 𝛽 coefficients for increases, no changes, and decreases in WYT.
Approximately seven days after new policy regimes take effect deviations from predicted stream flow increase if
there was an increase in the WYT, decrease if there was a reduction in the WYT, but stay approximately the same if
there was no change in the WYT.These changes are non-trivial in magnitude. Changing the WYT to the next wetter
(drier) designation increases (decreases) average daily discharges on the order of 10%.

D.3 Running variable manipulation

A common concern with regression discontinuity designs is manipulation of the running variable. Here the running
variable (the WYI) is a function of past rainfall and forecast climatic conditions, which cannot be manipulated by
optimizing economic actors. One may be concerned, however, there is pressure placed on the party responsible for
generating forecasts that underly the WYI calculation to adjust details so the WYI falls on one side or the other of a
WYT threshold. The direction of this hypothetical running variable manipulation is unclear as many parties beyond
electricity generators could potentially be impacted by changes in the WYT categorization.11

As a preliminary test for manipulation, I examine whether forecasts of the WYI – which are manipulable –
are unbiased predictors of the actual WYI measured by streamflow monitors – which is not manipulable. If rainfall

11Such manipulation of the running variable could bias the any RDD estimates through two channels. First, if the outcome variable is uncor-
related with the true (and unobserved) value of the running variable, the manipulation of the reported value of the running variable near the
discontinuity will tend to bias the estimated treatment effect toward zero. Second, if the decision to (or degree to which) the running variable is
manipulated is correlated with the outcome, RDD estimates could be biased in either direction.
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forecasts weremanipulatedwith the goal of producing specific states of theWYT, it would cause forecasts to be biased
predictors of the realized rainfall at the end of the year. Results in Appendix Section C.2.2 show one cannot reject
null hypotheses consistent with each WYI forecast being an unbiased estimator of the end-of-year WYI, computed
using only measurements from streamflow monitors.

Next, I consider the density of the WYI forecasts. If the WYI is manipulated so that it will fall on one side or the
other of a policy threshold, you would expect the density of the WYI to change discontinuously at that threshold.
Figure 3 shows a histogram of WYI values for each month a forecast was issued from 1990 to 2016. In general the
density of the WYI appears to vary smoothly across each policy threshold, but it is difficult to draw firm conclusions
from merely observing the graph.

As a formal test of running variable manipulation, I deploy statistical tests common in the regression discon-
tinuity design (RDD) literature. For each policy threshold, Table D.4 shows the nonparametric test of differences in
density across the threshold proposed by McCrary (2008) for the MSE-minimizing bandwidth choice. In each case, I
fail to reject the null hypothesis of running variable manipulation in the vicinity of policy thresholds.12

Table D.5 shows these for manipulation of the bandwidth using local polynomial approximations of the density
from Calonico et al. (2019) for an array of reasonable bandwidths and the MSE-minimizing bandwidth.13 I fail to
reject the null hypothesis of a discontinuity in the density of the running variable at the policy threshold when using
data-driven bandwidth choices.14

D.4 Additional RDD results

D.4.1 Robustness

Any RDD requires a number of modeling decisions by the researcher and the designs presented here are no exception.
The RDD presented as my primary specification is based on the most reasonable and parsimonious set of modeling
choices. However, as a test of the robustness of the specific research design underlying my primary specification,
I perturb these choices within a reasonable range and reestimate the RDD, comparing estimates to my primary
specification.

The RDD presented as my primary specification is based on the most reasonable and parsimonious set of mod-
eling choices. The estimates above show my results are robust to a range of reasonable bandwidth. However, as a
test of the further robustness of the specific research design underlying my primary specification, I perturb other
choices within a reasonable range and reestimate the RDD, comparing estimates to my primary specification.

Robustness Test - Exclude covariates: The primary RDD specification treats 28-day periods starting on the second
Monday of each month as observations. Observable factors influencing the mean heat rate of plants, for example
the total demand for electricity, can vary widely from over time. To improve the precision of my RDD estimates,
I include month-of-year fixed effects in my primary specification as described in Calonico et al. (2019). Figure D.4
shows estimates excluding covariates. As expected, the results are of a similar magnitude, but substantially less
precise.

12I also fail to reject the null hypothesis of no running variable manipulation using the test recommended in Calonico et al. (2019) using local
polynomial approximations of the running variable density. These results are presented in Appendix Section D.3.

13The data-driven bandwidth selection procedure described in Calonico et al. (2019) sometimes fails to select a bandwidth when data are sparse
around the policy threshold. Consequently, I report the results for a range of reasonable bandwidths. There are cases where the the data are too
sparse to estimate densities on both sides of the policy threshold. These are denoted by blank cells in Table D.5.

14For some large, manually-selected bandwidths, I reject the null of equal densities with a p-value of approximately eight percent. It is important
to note these bandwidths are larger than my preferred bandwidth and all of the data-driven automatic bandwidths for estimating effects around
the policy discontinuity. Further, the point estimates from tests on the same data with similar bandwidths are correlated and should not be
interpreted as independent tests statistical tests.
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D.5 Effect on emissions of and damages from local criteria pollutants

The estimates above show instream flow regulations have a deleterious impact on the efficiency of fossil fuel gener-
ation participating in the same market, increasing the quantity of fuel consumed to produce each MW of electricity.
These increases in fuel consumption will mechanically increase greenhouse gas (GHG) emissions and change the
combustion-related emissions of other local criteria pollutants from these plants. Emissions of these pollutants are a
significant externality of fossil fuel generation and quantifying their magnitude is important for understanding the
true social cost of instream flow requirements.

In Northern California, during the period examined here, all fossil fuel generation utilized natural gas as its fuel
source. Combustion of natural gas produces carbon dioxide (CO2), the principal GHG emitted by fossil fuel plants,
in a fixed, stoichiometric proportion. Due to this mechanical relationship between fuel consumption and GHG
emissions, my estimates in the previous sections of the impact on fossil fuel consumption can also be interpreted as
the change in GHG emissions resulting from instream flow requirements.

Emissions of other local criteria pollutants, such as nitrogen oxides (NOX) or sulfur dioxide (SO2), do not fol-
low this mechanical relationship. Further, the local natures of these pollutants are important for considering the
social cost of emissions. Each have deleterious impacts in the area surrounding the point of emission, but as they
travel away from the point of emission they are diluted, chemically break down, or are precipitated out of the atmo-
sphere, reducing their impact. Thus, the specific location where local criteria pollutants are emitted is important for
evaluating the social cost of emissions.

To estimate the social costs related to the emissions of local criteria pollutants, I rely on spatial estimates
computed in Muller (2014), which provides a county-level calculation of the marginal damages from NOX and SO2

across the United States. For each fossil fuel plant, I observe hourly NOX and SO2 emissions to the atmosphere in
CEMS. Using these data I can compute the total damages resulting from the emissions of each plant and the product
of the marginal damage rate and observed emissions.15

Changes in the allocation of electricity generation across fossil fuel plants could have ambiguous effects on
the damages from local criteria pollutants. While instream flow policies increase the total quantity of fossil fuels
consumed, if production is reallocated to plants with more sophisticated emissions control equipment or to plants
farther away from population centers, total damages could decrease. I investigate these effects by estimating the
RDD presented in Equation 5 with the emissions rate (quantity of pollution per MW of electricity), average marginal
damages, and total damages for each local criteria pollutant as outcomes.

These estimates show substantial increases, between in the total damages from NOX emissions for the D→BN
and BN→AN policies, with the principal driving factor being an increase in the quantity of emissions. Instream
flow policies have an ambiguous effect on SO2 damages. Increasing the stringency of instream flow policies tends to
increase SO2 emissions, but there is weak evidence emissions are reallocated to plants with lower marginal damage
rates. In the end, the change in SO2-related damages from each policy are generally statistically indistinguishable
from zero.

15This requires the reasonable assumption that emissions of local criteria pollutants from each fossil fuel generator are small compared to
the total pool of emissions in that region. The bulk of local criteria pollutant emissions come from the operation of automobiles with internal
combustion engines, which would not be impacted by the decisions to operate fossil fuel power plants.
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Figure D.1: Fossil fuel load and average heat rate in California, May 2015
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Fossil Fuel Load Average Heat Rate

Total fossil fuel load for California from CAISO’s Daily Renewables Watch shown in black. Heat rates for all fossil fuel generation in CAISO
from CEMS shown in blue. Solid lines are kernel regressions of hourly observations using the Epanechnikov kernel and default data-driven
bandwidths. Data limited to weekdays in May of 2015. Pointwise 95% confidence bands shown as dashed lines.
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Figure D.2: Heat Rate Profiles for Typical Combined Cycle Gas Turbines

(a) Colusa Generating Station, Unit CT2
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(b) Gateway Generating Station, Unit GT1
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Local polynomial regression of generator heat rate as a function of the change in output during the previous hour for two CCGTs in CAISO’s NP15
region. Based on operational data from CEMS from January 2012 to December 2015. Estimated as 1st-degree polynomials using the Epanechnikov
kernel and data-driven bandwidths. Pointwise 95% confidence intervals shown as shaded regions. Estimation limited to periods where the plant is

already warm and has been operation for at least five hours.

A
ppendix

D
-5



Figure D.3: Event study: Streamflow under changes in water year type (WYT)
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Event study of changes in stream flow in response to changes in minimum flow policies. Policies are set in
response to the Water Year Type (WYT). New forecasts underlying the WYT designation are released on
day zero. Lines represent deviations from predicted stream flow when the WYT decreases (orange), stays

the same (black), or increases (blue). Pointwise 95% confidence intervals robust to arbitrary
heteroskedasticity shown in dashed lines.
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Figure D.4: Robustness Test: No Covariates

(a) Policy Threshold CD→D
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(c) Policy Threshold BN→AN
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Robustness test alters the primary specification by excluding covariates (black). Estimates from the primary specification shown in orange for comparison. Estimated effect size by RDD bandwidth.
Pointwise 95% confidence intervals shown as dashed lines.
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Table D.1: Minimum recreational flows at Chili Bar Dam

Source: Federal Energy Regulatory Commission, Order Issuing New License, Pacific Gas & Electric Company Project 2155-024, August 20, 2014. Excludes minimum discharges under the super
critical dry designation can only occur after multiple years of critical dry designations.
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Table D.2: Reconstructed WYI and WYT by month 1990 to 2016

(a) 1990 - 1996

Year Month WYI WYT
1990 Feb 5.282 C
1990 Mar 4.995 C
1990 Apr 4.545 C
1990 May 4.397 C
1990 Oct 4.810 C
1991 Feb 3.564 C
1991 Mar 3.148 C
1991 Apr 4.432 C
1991 May 4.304 C
1991 Oct 4.210 C
1992 Feb 3.838 C
1992 Mar 4.532 C
1992 Apr 4.310 C
1992 May 4.246 C
1992 Oct 4.060 C
1993 Feb 7.306 BN
1993 Mar 8.017 AN
1993 Apr 8.210 AN
1993 May 8.370 AN
1993 Oct 8.540 AN
1994 Feb 5.787 D
1994 Mar 5.944 D
1994 Apr 5.278 C
1994 May 5.091 C
1994 Oct 5.020 C
1995 Feb 9.550 W
1995 Mar 8.672 AN
1995 Apr 11.409 W
1995 May 12.397 W
1995 Oct 12.890 W
1996 Feb 7.461 BN
1996 Mar 9.375 W
1996 Apr 9.384 W
1996 May 9.708 W
1996 Oct 10.260 W

(b) 1997 - 2003

Year Month WYI WYT
1997 Feb 13.338 W
1997 Mar 11.458 W
1997 Apr 11.293 W
1997 May 11.005 W
1997 Oct 10.820 W
1998 Feb 9.581 W
1998 Mar 12.333 W
1998 Apr 12.171 W
1998 May 12.361 W
1998 Oct 13.310 W
1999 Feb 8.837 AN
1999 Mar 10.282 W
1999 Apr 10.073 W
1999 May 10.044 W
1999 Oct 9.800 W
2000 Feb 7.863 AN
2000 Mar 9.525 W
2000 Apr 9.229 W
2000 May 9.229 W
2000 Oct 8.940 AN
2001 Feb 5.986 D
2001 Mar 6.278 D
2001 Apr 5.811 D
2001 May 5.871 D
2001 Oct 5.760 D
2002 Feb 7.404 BN
2002 Mar 6.795 BN
2002 Apr 6.727 BN
2002 May 6.503 D
2002 Oct 6.350 D
2003 Feb 7.904 AN
2003 Mar 7.047 BN
2003 Apr 7.172 BN
2003 May 8.036 AN
2003 Oct 8.210 AN

Table continued on next page.
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Table D.2: Reconstructed WYI and WYT by month 1990 to 2016 (continued)

(c) 2004 - 2010

Year Month WYI WYT
2004 Feb 7.709 BN
2004 Mar 8.546 AN
2004 Apr 8.021 AN
2004 May 7.681 BN
2004 Oct 7.510 BN
2005 Feb 7.400 BN
2005 Mar 6.866 BN
2005 Apr 7.351 BN
2005 May 7.395 BN
2005 Oct 8.490 AN
2006 Feb 9.770 W
2006 Mar 9.965 W
2006 Apr 11.383 W
2006 May 13.023 W
2006 Oct 13.200 W
2007 Feb 6.383 D
2007 Mar 6.911 BN
2007 Apr 6.303 D
2007 May 6.199 D
2007 Oct 6.190 D
2008 Feb 6.304 D
2008 Mar 6.318 D
2008 Apr 5.724 D
2008 May 5.396 C
2008 Oct 5.160 C
2009 Feb 4.644 C
2009 Mar 5.128 C
2009 Apr 5.672 D
2009 May 5.489 D
2009 Oct 5.780 D
2010 Feb 6.546 D
2010 Mar 6.287 D
2010 Apr 6.257 D
2010 May 6.881 BN
2010 Oct 7.080 BN

(d) 2011 - 2016

Year Month WYI WYT
2011 Feb 7.856 AN
2011 Mar 7.727 BN
2011 Apr 9.981 W
2011 May 10.022 W
2011 Oct 10.540 W
2012 Feb 5.986 D
2012 Mar 5.465 D
2012 Apr 6.416 D
2012 May 6.861 BN
2012 Oct 6.890 BN
2013 Feb 7.546 BN
2013 Mar 6.393 D
2013 Apr 6.014 D
2013 May 5.790 D
2013 Oct 5.830 D
2014 Feb 3.731 C
2014 Mar 3.839 C
2014 Apr 4.143 C
2014 May 4.019 C
2014 Oct 4.070 C
2015 Feb 5.127 C
2015 Mar 4.713 C
2015 Apr 4.137 C
2015 May 3.965 C
2015 Oct 4.010 C
2016 Feb 6.497 D
2016 Mar 6.122 D
2016 Apr 7.262 BN
2016 May 7.115 BN

WYI and WYT for the Sacramento Valley reconstructed from forecasts in CADWR Bulletin 120 (Feb - May) or actual measured runoff (Nov)
then the formula specified by CADWR. Replicating methods used by CADWR, the WYT designation is computed by first rounding WYI to the

nearest 0.1 then applying policy thresholds shown in the main paper.
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Table D.3: Regression estimates of WYI forecast accuracy

Coefficients Wald Test Paired t-Test
Slope Intercept 𝑅2 F-stat p-value Difference p-value

Forecast Month (1) (2) (3) (4) (5) (6) (7)

February 1.10 -0.09 0.63 1.93 0.17 -0.58 0.08
(0.30) (2.04)

March 1.10 -0.23 0.74 1.31 0.29 -0.43 0.13
(0.12) (0.80)

April 1.13 -0.71 0.95 2.98 0.07 -0.24 0.08
(0.06) (0.41)

May 1.05 -0.21 0.98 2.35 0.12 -0.13 0.07
(0.03) (0.19)

Regressions of the final end-of-year WYI on the forecast WYI by month. Standard errors robust to arbitrary heteroskedasticity shown in
parentheses. Columns 4 and 5 show the F-statistic and p-value of a Wald test that the null hypothesis the slope equals one and the intercept
equals zero. Columns 6 and 7 show the mean difference and p-value of a paired t-Test of the forecast WYI and end-of-year WYI. The null

hypothesis of both tests are implied in the forecast WYI being an unbiased estimator of the end-of-year WYI.
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Table D.4: Test of running variable manipulation (McCrary)

Policy Threshold Obs. Obs. McCrary
Name WYI Left Right Bandwidth t-stat p-value

CD → D 5.4 37 31 0.359 0.16 0.873
D → BN 6.5 31 25 0.291 -0.00 1.000
BN → AN 7.8 25 15 0.252 0.50 0.619
AN → W 9.1 15 37 0.727 0.66 0.508

Test of running variable manipulation using data-driven bandwidth selection from McCrary (2008) at each policy threshold. WYI
from CADWR forecasts released in February, March, April, and May from 1990 to 2016.
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Table D.5: Test of Running Variable Manipulation (calonico2016regression)

Policy CD → D D → BN BN → AN AN → W
Threshold (WYI) 5.4 6.5 7.8 9.2

Bandwidth 0.3

Bandwidth 0.4 -0.772 -0.808 0.410
(0.440) (0.419) (0.681)

Bandwidth 0.5 -0.790 -0.881 0.520
(0.429) (0.378) (0.603)

Bandwidth 0.6 -1.074 -1.313 0.759
(0.283) (0.189) (0.448)

Bandwidth 0.7 -0.932 -1.331 0.771 0.839
(0.352) (0.183) (0.441) (0.402)

Bandwidth 0.8 -0.552 -1.222 0.481 0.904
(0.581) (0.222) (0.630) (0.366)

Bandwidth 0.9 -0.320 -1.048 0.268 0.843
(0.749) (0.295) (0.789) (0.399)

Bandwidth 1.0 -0.352 -0.985 0.002 0.722
(0.725) (0.325) (0.999) (0.470)

MSE-min Bandwidth -0.556 -1.023 0.353 0.768
(0.578) (0.306) (0.724) (0.443)

Selected Bandwidth 0.80 1.11 0.85 0.63

Test of running variable manipulation from calonico2016regression using local linear density estimators at each policy threshold for
the specified bandwidth. WYI from CADWR forecasts released in February, March, April, and May from 1990 to 2016. MSE-min
bandwidth selects an MSE-optimal bandwidth as the smallest of the bandwidth which minimizes the MSE difference of the two

densities and the bandwidth which minimizes the MSE of the sum of densities. Nonparametric local linear densities estimated using
the triangle kernel assuming the CDF on each side of the threshold have equal higher-order derivatives. This data-driven bandwidth
selection procedure described in Calonico et al. (2019) sometimes fails to select an optimal bandwidth. Consequently, I report the

results for a range of reasonable bandwidths. There are cases where the the data are too sparse to estimate densities on both sides of
the policy threshold. These are denoted by blank cells.
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Table D.6: Effect of instream flow requirements on NOX emissions and damages

(a) NOX Emissions Rate

CD→D D→BN BN→AN

log NOX Emissions Rate (ton/MWh) 0.028 4.887 1.620
(0.076) (0.741)*** (0.787)**

RD Bandwidth 0.400 0.400 0.400
(b) NOX Average Marginal Damages

CD→D D→BN BN→AN

log NOX Marginal Damages ($/ton) -0.038 0.129 0.020
(0.008)*** (0.058)** (0.042)

RD Bandwidth 0.400 0.400 0.400
(c) NOX Total Damages per MWh

CD→D D→BN BN→AN

log NOX Total Damages ($/MWh) 0.104 3.807 1.549
(0.046)** (0.778)*** (0.440)***

RD Bandwidth 0.400 0.400 0.400

Each panel shows the effect of the specified instream flow policy change on the mean system-wide log mean NOX emissions using
the RDD described in the main paper. Panel (a) shows the effect on the emissions rate (in tons per MWh of electricity generated).
Panel (b) shows the quantity-weighted mean marginal damages per ton of emissions using county-level marginal damages from

Muller (2014). Panel (c) shows the mean damages per MWh of electricity generated. Standard errors clustered by the CADWR WYI
designation period, updated in February, March, April, May, and October, are shown in parentheses. *,**,*** denote results significant

at the 10%, 5%, and 1% levels, respectively.
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Table D.7: Effect of instream flow requirements on SO2 emissions and damages

(a) SO2 Emissions Rate

CD→D D→BN BN→AN

log SO2 Emissions Rate (ton/MWh) 0.031 0.395 0.184
(0.009)*** (0.024)*** (0.131)

RD Bandwidth 0.400 0.400 0.400
(b) SO2 Average Marginal Damages

CD→D D→BN BN→AN

log SO2 Marginal Damages ($/ton) 0.064 0.169 -0.105
(0.009)*** (0.093)* (0.085)

RD Bandwidth 0.400 0.400 0.400
(c) SO2 Total Damages per MWh

CD→D D→BN BN→AN

log SO2 Total Damages ($/MWh) 0.195 -0.287 0.209
(0.017)*** (0.159)* (0.183)

RD Bandwidth 0.400 0.400 0.400

Each panel shows the effect of the specified instream flow policy change on the mean system-wide log mean SO2 emissions using the
RDD described in the main paper. Panel (a) shows the effect on the emissions rate (in tons per MWh of electricity generated). Panel

(b) shows the quantity-weighted mean marginal damages per ton of emissions using county-level marginal damages from
Muller (2014). Panel (c) shows the mean damages per MWh of electricity generated. Standard errors clustered by the CADWR WYI
designation period, updated in February, March, April, May, and October, are shown in parentheses. *,**,*** denote results significant

at the 10%, 5%, and 1% levels, respectively
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