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Abstract

College education, home ownership, and automobiles are all examples of purchases where consumers sink a
large up-front investment expecting to enjoy a stream of future net benefits. Often those benefits are uncertain
at the time of purchase. We consider how uncertainty in future operating costs impacts the choice of vehicle
fuel economy. Using measures of forward gasoline price uncertainty from Real Options Theory and compre-
hensive data on sales of automobiles in the US, we find future gasoline price uncertainty has economically
meaningful impacts on vehicle demand, with a one standard deviation increase in the variance of the future
price distribution increasing willingness-to-pay for fuel economy by 10%, slightly improving mean fuel econ-
omy, but substantially reducing total vehicle sales. This new finding has implications for policy surrounding
energy use in transportation. As an example, we find the uncertainty in compliance costs under cap-and-trade
climate regulation reduces vehicle sales more than twice as much as an equivalent carbon tax with no uncer-
tainty.

JEL: Q41, D84, L62
Keywords: Uncertainty, Consumer beliefs, Gasoline prices, Automobile demand, Energy Efficiency
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1 IntRoduction

People regularly make large up-front investments with expectations that they will deliver a future stream of bene-
fits. College education, home and automobile purchases are but a few examples. In many cases, however, the future
stream of benefits is uncertain—unanticipated future conditions may alter the benefits a consumer derives from
utilizing the investment. For example, changing labor market conditions may increase or decrease the value of a
college degree. Alternatively, the ongoing costs associated with using the investment may change, e.g., changing
fuel prices may make an SUV more expensive to drive.

A long literature shows consumers rationally incorporate their expected future benefits into their willingness
to pay for sunk investments which are enjoyed over time. For example, for many US residents, primary residences
are their most valuable assets. Amenities delivering a stream of benefits to the homeowner, such as air quality
(e.g., Harrison and Rubinfeld (1978)), recreation benefits from improved water quality (Kuwayama, Olmstead, and
Zheng (2022)) or access to high-quality public schools (e.g., Fack and Grenet (2010)) are capitalized into the up-front
cost of buying a home. There is less understanding, however, of how the level of uncertainty over those future
benefits impacts the decision to make such investments.1

In this paper we examine how consumers of automobiles respond to uncertainty in future operating costs
when making the vehicle purchase decision. Improved fuel economy not only reduces the expectation of future
operating costs, it reduces exposure to uncertainty in future operating costs as a given fuel cost shock will have
a smaller impact on the total operating cost of a more fuel efficient vehicle. Consistent with consumers having
risk-averse preferences over future operating costs, we find that conditional on the central expectation of future
operating costs, automobile purchasers value reducing their exposure to future uncertainty in those costs. Namely,
as uncertainty in future gasoline prices increases, consumers’ willingness-to-pay for fuel economy increases as
well.

Measuring individual responses to uncertainty is empirically challenging because it can be difficult to measure
their perceived level of uncertainty. In both field and laboratory experiments, participants frequently state prior
probabilities over future outcomes which are inconsistent with their revealed behavior (Danz, Vesterlund, and
Wilson (2022)) or express differing assessments of their own uncertainty depending on the elicitation mechanism
(Pedroni et al. (2017)). Rather than rely on stated beliefs of future uncertainty, we derive market measures of
future price uncertainty by applying Real Options theory to data from US oil and gasoline markets. These implied
volatility measures of future uncertainty are the outcome of revealed behavior of traders with substantial financial
stakes in these markets. We further show these market measures of uncertainty are correlated with the dispersion
of consumers’ stated beliefs over future gasoline prices.

We estimate the impact of future price uncertainty on consumer automobile purchases using a comprehen-
sive state-level panel of new automobile purchases in the United States (US) and a nested logit model of demand
following Berry (1994). We find future price uncertainty has statistically and economically significant impacts on
consumer’s willingness-to-pay (WTP) for fuel economy. A one-standard deviation increase in implied volatility
increases the mean consumer’s marginal WTP for an additional miles per gallon (MPG) of fuel economy by $89
from a baseline of $889/mpg. This can have large effects on the vehicle stock, which is slow to turn over. Similar

1The primary exceptions center on responses of real estate prices to the risk of catastrophic losses, e.g., MacDonald, Murdoch, and
White (1987) or Bakkensen and Barrage (2022). There is also a substantial finance literature analyzing optimal portfolio choice under
dynamic uncertainty, e.g., Chacko and Viceira (2005). The investments they consider are generally transacted in thickly-traded markets,
have relatively low transaction costs and the truly “sunk” component of the investment is quite small.
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to other work modeling vehicle choice in response to the level of future operating costs, such as Leard, McConnell,
and Zhou (2019), we find future price uncertainty can have large extensive margin effects on the decision to pur-
chase any vehicle, with a 1-standard deviation increase in future price uncertainty reducing overall vehicle sales
by 6.8%. The intensive margin effect on the fuel efficiency is more muted, with that same 1-standard deviation
increase leading to a 0.5% increase in the mean MPG rating of vehicle purchased, primarily driven by a shift in the
composition sales from pickups and SUVs to more efficient sedans and crossovers.

These results also have important implications for the design of climate policy in automobiles. Many proposed
policies to address greenhouse gas emissions utilize either price based (e.g., carbon taxes or fees) or quantity-
based (e.g., cap-and-trade) compliance mechanisms. Weitzman (1974) finds uncertainty in marginal abatement
costs can cause these policies to differ from the first-best in expectation. This paper identifies a new channel.
While compliance costs under a price instrument are ex ante known with certainty, compliance costs under an
equivalent quantity instrument are uncertain. This uncertainty passes through to uncertainty in fuel costs and leads
consumers tomake different vehicle purchase decisions than under an equivalent (in expectation) price instrument.
Again the effects are economically meaningful. We simulate the impact of price and quantity instruments for
climate regulation using the European Union Emissions Trading System (EU-ETS) as a model for the level and
future uncertainty in compliance costs. Compared to an equivalent price instrument, a quantity instrument induces
consumers to purchase moderately more fuel-efficient vehicles, but reduces overall vehicle sales by more than
double the effect of a comparable price instrument. New vehicles tend to be more efficient than the vehicle they
replace, which insulates drivers from higher fuel prices, which induces additional driving that can outweigh the
benefits of improved fuel efficiency of new vehicles sold. This reinforces it is important to account for consumer
responses to uncertainty in the design climate regulation.

1.1 Measuring Valuation of Durable Goods

Standard economic theory and a long history of empirical analysis show consumers consider their future stream of
net benefits when making irreversible investments. This trade-off between a sunk investment and future benefits
can occur in a diversity of settings. For example, Attanasio and Kaufmann (2017) find private expectations of the
financial return to college education and/or marriage (both sunk investments) impact the likelihood an individual
undertakes either. Chay and Greenstone (2005) show US homeowners capitalize policy-induced improvements in
air quality into the purchase price of homes. Further, they find heterogeneity in preferences for air quality induce
taste-based sorting of homeowners. Gowrisankaran and Rysman (2012) examine how changes the up-front cost of
a durable good (video camcorders) impacts the timing of purchase behavior. They find price increases have a large
short-run effect, but a much more muted long-run impact on sales.

Much of the work examining how WTP for up-front investments varies with expected future net benefits
focuses on energy-consuming durable goods. These purchases are ideal settings to examine forward-looking con-
sumer behavior; first because the bulk of operating costs are directly attributable to energy consumption, which
is often well-measured both by the consumer and the econometrician. Further, conditional on other attributes
there is frequently a clear cost-efficiency trade-off. Finally, energy prices are observable and exhibit sufficient
time-series variation to enable estimation of the impacts of expected future operating costs on WTP. Automobiles
are the the most-considered example, likely due to their large capital cost and salient fuel costs. They are not the
only such energy-consuming durable, e.g., Hausman (1979) and Rapson (2014) both consider how WTP for home
air conditioners varies with anticipated future operating costs from energy inputs. Considering energy produc-

2



tion, Gillingham and Watten (2024) find incomplete capitalization of the future benefits of residential solar panels
(which depend on future electricity prices) into home values.

The bulk of this literature considers how only the central expectation of future operating costs impacts WTP,
often assuming future benefits are well-approximated by current conditions. In this paper we consider how both
the central expectation and the uncertainty around that expectation of future operating costs impact the willingness-
to-pay for fuel efficiency in automobiles.

1.2 Valuation of Energy Efficiency

Much of this literature finds consumers value the benefits of energy efficiency in durable goods less than the present
discounted value of the implied cost savings. This observation, outlined by Jaffe and Stavins (1994) who coined
it the “energy efficiency paradox” is most often noted in automobiles, e.g., Allcott and Wozny (2014) or Greene,
Evans, and Hiestand (2013). However, research finds similar undervaluation in other durable goods such as air
conditioners (Hausman (1979)) or energy-efficient light bulbs (Allcott and Taubinsky (2015)). Particularly with
automobiles, there is substantial debate on the sources of this paradox,2 or whether it exists at all.3 Greene (2011)
argues it may arise because consumers are uncertain about the true energy savings at the time of purchase, causing
them to undervalue marginal efficiency improvements relative to their present value energy savings.

Considering automobiles, field experiments in Allcott and Knittel (2019) find little evidence that prospective
automobile buyers are poorly-informed of fuel economy. In a quite different context, Berkouwer and Dean (2022)
find inattention to energy consumption is not a major contributor to the underadoption of energy-efficient cook-
stoves. Also consistent with Greene (2011), they find households classified as risk averse exhibit lower WTP for
the unfamiliar technology. In contrast, Oliva et al. (2020) find uncertainty over future costs increases adoption of
a new technology when those costs are incurred after the uncertainty is resolved. Here, in contrast, we examine
the role of future fuel price uncertainty on valuation of energy efficiency. We find consumers value fuel economy
in automobiles less than the full NPV cost savings, however, we also show that ignoring uncertainty substantially
understates the true WTP for fuel economy.

1.3 Expectations of Future Energy Prices

Finally, much of the work examining valuation of fuel economy embeds an assumption that automobile purchasers
believe future gasoline prices will be identical to their current level. This assumption is justified through analysis
in Anderson, Kellogg, and Sallee (2013) and Anderson, Kellogg, Sallee, and Curtin (2011) who find consumers have
beliefs over future fuel prices consistent with a no-change forecast.4 In contrast, Archsmith and Levin (2025),
using similar but more recent survey data, shows evidence that consumers’ beliefs over future gasoline prices
started to deviate from a no-change forecast beginning with the large increase in the level and uncertainty in
gasoline prices during the leadup to the financial crisis of 2008. We reinforce this later finding using the revealed
behavior of automobile purchases. We find consumers act in a manner consistent with risk-aversion with respect
to uncertainty in future fuel prices with implications for automobile demand, energy and climate policy.

Our analysis will proceed as follows: As motivation for our empirical analysis, in Section 2 we outline a simple
2Bento, Li, and Roth (2012) argue unobserved consumer heterogeneity may bias estimates toward undervaluation of fuel economy.
3Some estimates of WTP for fuel economy find full valuation or little evidence of undervaluation., e.g., Busse, Knittel, and

Zettelmeyer (2013) or Sallee, West, and Fan (2016).
4Using aggregate data, Binder (2018) finds US consumers anticipate some mean reversion in future gasoline prices.
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theoretical model of vehicle choice under fuel price uncertainty and derive predictions of consumer behavior under
various assumptions of the nature of uncertainty and consumer risk preferences. Section 3 will describe data used
in our empirical analysis. Section 4 will describe methods used in our analysis including our calculation of market-
basedmeasures of future uncertainty and our structural model of automobile demand. Section 5 describes estimates
and tests of robustness from the demandmodel. Section 6 applies these estimates to derive predictions of the impact
of policy-induced uncertainty in climate regulation and Section 7 concludes.

2 Motivation

2.1 A Model of Consumer Vehicle Choice Under Future Gasoline Price Uncertainty

As motivation, we develop a model of consumer vehicle choice when future gasoline price are uncertain and
consumers may not be risk-neutral. We start with the vehicle purchase decision, then describe the flow of utility
from using the vehicle and finally introduce uncertainty. Proofs of results presented here are available in the
Appendix A.

2.1.1 Vehicle Purchase Decision

Consider a consumer that makes an irreversible decision to purchase some new vehicle i from the set of all available
vehicles I at time t = 0. Each vehicle has some set of attributes xi, a fuel-intensity of operation5 gi, and up-front
cost pi.

Consumers own the vehicle over the subsequent T periods, deriving utility Ut in each period from use of
the vehicle. At t = 0 the consumer believes future states of utility in period t have density ΩU

t . The consumer is
forward-looking with discount factor β, has risk preferences R(Ut), receives income ωt with constant marginal
utility of money normalized to one. Thus, when purchasing a vehicle at t = 0, the consumer will choose the vehicle
i that maximizes current period expected utility

EU(i = i) = R
(
ω0 − P V

i

)
+

T∑
t=1

[
βt

∫
R(Ut)Ω

U
t (Ut)dUt

]
(1)

2.1.2 Vehicle Operation Decision

A vehicle has a life of T periods. In each period t ∈ [1, T ], the consumer observes gasoline prices in that period
ft and decides how much they will drive the vehicle Vt. Consumers derive additively-separable utility from the
vehicle’s attributesA(xi) and driving h(Vt) with positive, diminishing marginal utility for positive Vt, thus h > 0,
h′ > 0 and h′′ < 0 ∀Vt > 0. They must also pay for fuel with a cost that is the product of the fuel price, vehicle
fuel intensity and the amount driven. Thus in each period, the consumer derives utility from use of vehicle i

Ut (Vt|i = i) = ωt +A(xi) + h(Vt)− ftgiVt (2)

5In the US fuel consumption of vehicles is generally expressed in MPG, which is the inverse of the fuel-intensity. In both the theory here
and empirical models later, wewill use the fuel intensity expressed in gallons per mile (GPM) so it enters the cost expressionmultiplicatively.
Importantly, while fuel-economy is a good, fuel-intensity (conditional on other attributes) is a bad.
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and chooses Vt to maximize utility

Vt(ft|i = i) = argmax
V

{ωt +A(xi) + h(V )− ftgiV } (3)

Because h is concave, conditional on a vehicle fuel intensity, there is a unique V (ft|gi) : ft → Vt that
maximizes current period utility with ∂Vt

∂ft
< 0.

2.1.3 Operating Cost Uncertainty

When purchasing the vehicle, consumers are making a decision to maximize expected utility in the future. How-
ever, gasoline prices are uncertain. Gasoline prices impact operating costs and the operation decision, and directly
impact a consumer’s valuation of a vehicle at the time of purchase. Suppose only future gasoline prices are uncer-
tain. At time t = 0 the consumer believes the distribution of potential future gasoline prices at time t has pdf Ωf

t .
Then at time t = 0 the consumer’s expected utility of purchasing vehicle i is

EU(i = i) = R (ω0 − pi) +

T∑
t=1

[
βt

∫
R (ωt +A(xi) + h (V (ft · gi))− V (ft · gi) · ftgi)Ωf

t (ft)dft

]
(4)

2.1.4 Consumer Valuation of Fuel Intensity

We are interested in how future uncertainty may impact a consumer’s willingness to pay for a specific new vehicle.
In particular, how future gasoline price uncertainty may impact the consumer’s valuation of the fuel intensity of a
vehicle.6 For a specific vehicle we derive the marginal willingness to pay for fuel intensity (MWTPg) as the ratio of
the marginal change in expected utility from a marginal increase in fuel intensity to the marginal utility of money
at time zero. Thus

MWTPg =

∂EU
∂g

R′
0

=
1

R′
0

T∑
t=1

βt

∫
−ftV (ft · gi)︸ ︷︷ ︸

∂op. costs

R′ (ωt +A(xi) + h (V (ft · gi))− V (ft · gi) · ftgi)︸ ︷︷ ︸
∂Ut

Ωf
t (ft)dft

 (5)

This expression shows consumers MWTPg is the present-value discounted expected change in operating costs
across time, weighted by the corresponding marginal utility in each possible gasoline price state. This leads us to
consider MWTPg under different assumptions of consumer risk preferences and future gasoline price uncertainty.

Risk Neutrality: Suppose the consumer is risk neutral. Then R′(u) = R ∀Ut In this case MWTPg is

MWTPg = −
T∑
t=1

βt

∫
[ftV (ftgi)] Ω

f
t (ft)dft (6)

or the present value expected additional fuel costs from a unit increase in gi.
6Recall that operating costs increase with increases in fuel intensity, so conditional on other attributes consumers should have a negative

valuation of marginal changes in fuel intensity.
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Risk Preferences andNoUncertainty: Suppose the consumer has some preference over future states of theworld,
thus R(u) is not constant. Second, assume there is no uncertainty over future gasoline prices and the consumer
believes ft = f̂t with certainty. Risk preferences weight utility in each state. For notational simplicity we define
R′
t(∆ft) as the marginal utility of consumption in period t under a gasoline price change of ∆ft from period 0.7

In this case Ωf
t is the Dirac delta function centered on ft and, after integrating over this distribution, the MWTPg

is

MWTPg = −
T∑
t=1

βt [ftV (ftgi)]
R′t(∆ft)

R′
0

(7)

or the present value of the future stream of fuel cost changes weighted by marginal utility in each period. If we
further assume that consumers believe the gasoline price in all future periods will be identical to the price today
and income in each period is constant then up to a scalar factor, this expression reduces to the current gasoline
price times the present discounted sum of future miles traveled.

Risk Preferences and Uncertainty: Suppose the consumer has preferences over future states of the world and
future gasoline prices are uncertain. For simplicity assume the consumer believes the gasoline price at time t is
drawn from a distribution ft ∼ Ωf

t parameterized by its mean µt and a measure of it’s spread σt where if σt = 0

then ft = µt with certainty but E [|ft − µt|] is strictly increasing in σ. Consistent with evidence in Anderson,
Kellogg, and Sallee (2013) assume µt = f0 ∀t. Now, consider the first-order Taylor expansion of the MWTPg
around σ = 0:

MWTPg =
∂EU

∂g

∣∣∣∣
σ=0

+ σ
∂2EU

∂g∂σ

∣∣∣∣
σ=0

+ . . .

≈ − f0

T∑
t=1

βtV (E[ft]gi)
R′t(∆ft)

R′
0︸ ︷︷ ︸

∂MWTPg with certainty

+σ
T∑
t=1

βt

∫ [
ftV (ftgi)

R′t(∆ft)
R′

0

∂Ωf
t

∂σ

∣∣∣∣∣
σ=0

]
dft︸ ︷︷ ︸

∂MWTPg from ∂σ

(8)

This expression highlights how a consumer’s valuation of fuel intensity will be impacted when they have risk
preferences and future fuel prices are uncertain. The first term is the consumer’s valuation absent uncertainty
over future prices, or the marginal present discounted change in operating costs from a marginal increase in fuel
intensity, weighted by marginal utility of money in each period. The second term is the present discounted value
of the change in marginal operating costs, weighted by marginal utility of money in that period, integrated over
changes in the probability distribution of gasoline prices as the spread increases. In general the sign of this term
is ambiguous. However, assuming Ωt is symmetric around the expectation ft, then for risk-averse consumers this
terms must be less than zero and than zero and increasing σ must decrease MWTPg. In other words, valuation of
fuel economy is increasing in uncertainty over future prices.

7Total utility must be decreasing in gasoline prices. Therefore, for risk-averse agents R′
t(∆ft) is increasing in∆ft.

6



3 Data

3.1 Commodity Price Data

Our measures of current gasoline prices and future uncertainty are built using futures and options contract prices.
Derivative contracts for both refined gasoline (specifically Reformulated Blendstock for Oxygenated Blending
(RBOB)) and crude oil (specifically West Texas Intermediate crude oil (WTI)) are traded on the New York Mer-
cantile Exchange.8 For these commodities we have collected the daily closing price and volume for each futures
contract listed for sale on that day and the volumes and closing prices of all options contracts for each of those
futures contracts. We collect these data from Refinitiv. Using their API it is not possible to reconstruct a list of
all options that ever traded for a particular futures contract. We are, however, able to reconstruct the full series
of futures contracts. For each futures contract, we determine the highest and lowest daily closing prices for those
contracts and attempt to collect options contract data for all possible contracts with strike prices within the range
of observed futures prices ±10%.9

[Table 1 about here.]

We additionally obtain refiner spot prices for WTI and RBOB and retail gasoline prices by PADD from the
Energy Information Administration (EIA).

3.2 Vehicle Registration Data

Our analysis of consumer automobile purchase behavior primarily relies on data from IHS Markit vehicle regis-
tration data for the United States. The data cover new vehicle registrations, by state and quarter, between 2010
and 2019. Observations are differentied by registration type, vehicle make, model,series, fuel types10, body style,
drive type, and engine displacement. In addition, the data contains vehicle MSRP and new registration counts.
For additional vehicle characteristics, we merge our registration data with more detailed specification data from
Wards Intelligence, matching vehicles based on characterstics available in the IHS data. From the Wards data, we
obtain vehicle fuel efficiency, horsepower, curb weight, and wheelbase length. To manage dimensionality of our
dataset, we aggregate vehicles in each quarter by make, model, body style, and power type, taking sales-weighted
averages of other vehicle characteristics. To calculate market shares, we use the count of licensed drivers in each
state.

Before estimation, we perform a few additional data processing steps. First, we remove fleet registrations
from our observations; our analysis focuses on consumer behavior and fleet vehicle purchases are likely based on
different factors than individual vehicle purchases (e.g., Leard, McConnell, and Zhou (2019) find different responses
to gasoline price increases in fuel economy of vehicle purchased across different types of fleet buyers). In addition,
we omit registrations of battery electric vehicles (BEVs), implicitly including them (along with used vehicles) in our
outside good. We do this because our estimation is focused on fuel price uncertainty, as measured through implied
volatility of oil prices. Because BEVs do not use gasoline, we believe including themwould be inappropriate. Given

8We also obtain futures and options contracts for emissions allowances under the European Union Emissions Trading System, traded
on Eurex.

9Generally our calculation of implied volatility will only consider options contracts that are close to “in-the-money”. These contracts
will always have strike prices falling within the range of observed futures contract prices.

10Fuel type classifications include electricity for hybrid and non-hybrid vehicles.

7



that BEVs make up a very small percentage of the overall market in this time period (less than 1%), we believe this
is reasonable step.

3.3 Additional Data

We rely on the following additional data for some analyses:

Interest Rates: As we will describe in Section 4.1.2, we compute a forward-looking measure of implied volatility
in future fuel prices using methods from Real Options Theory. These models require a measure of the risk-free
interest rate. As an approximation we use 1- and 3-year zero-coupon US Federal Treasury bond interest rates
obtained from the St. Louis Federal Reserve.

VIX: Our analysis in this paper focuses on uncertainty in future gasoline prices, which may contribute to general
macroeconomic uncertainty. To control for time-varying macroeconomic uncertainty, we include the CBOE VIX
index as a control in some of our analyses. VIX is a forward-looking measure of future uncertainty in equities
composing the S&P 500 stock index, computed using methods similar to the our calculation of forward-looking
fuel price uncertainties. We obtain daily values of the VIX index from the St. Louis Federal Reserve. When the
time unit of analysis is larger we aggregate the series, taking averages over the length of the time unit.

EU-ETS Market Data: In a policy analysis presented in Section 6 we simulate consumer behavior under counter-
factual prices and future uncertainty from a climate regulation similar to the EU-ETS. We compute GHG emissions
prices and their future uncertainty using futures and options contracts for EU-ETS emissions allowances traded
on the Eurex exchange from April 2010 to the present. These contracts are traded under two ticker symbols: CFI2
and EFOM. As with other commodity market data, we collect these data from Refinitiv.

4 Methods

4.1 Modeling Uncertainty

Themodel in Section 2.1 posits that the agent has some belief about the distribution of possible prices in the future.
One can characterize the agent’s uncertainty as the variance or spread of this distribution. During periods of low
uncertainty this variance is low and the agent can say with high confidence they believe the future price will fall
within some narrow range. If the variance of this distribution increases, then the agent will have lower confidence
in any given prediction. We will refer generally to the level of uncertainty over future prices as volatility.

It is important to distinguish the concept of forward-looking uncertainty from variability in prices. While high
volatility may be associated with a period of highly variable prices, it can also signal other forms of uncertainty,
e.g., whether prices will remain near their current level or trend upward for an extended period. Conversely, the
agent may believe there will be high variability of prices within a narrow band, in which case they can still say
with high confidence that prices will fall within that band. In this case, while variability may be high, volatility
will be low due to the narrow distribution of their beliefs over future prices.
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4.1.1 Models of Asset Price Uncertainty

In this paper, we empirically investigate how individuals purchasing automobiles respond to volatility of future
fuel prices, which requires we have an objective measure of forward-looking uncertainty. There are two broad
approaches to measuring volatility of asset prices. Both assume that at least some portion of the evolution of
future prices is stochastic, they place structure on the process of price evolution, and then empirically estimate or
analytically derive parameters of that structural model. The distribution of that stochastic component will identify
the volatility of the asset price.

The first set of methods for estimating volatility are retrospective measures. These operate under the assump-
tion that changes of asset prices in the recent past inform how they may change in the future. There is a large
taxonomy of these time series models (e.g., ARCH, GARCH) with differing underlying assumptions on the evo-
lution of prices. The principal advantage of these models is that one can estimate volatility using only historical
price data. Conversely, since estimates are based only on how prices changed in the past, the volatility estimates
from these models are inherently backward-looking. If some change in market conditions changes volatility, one
must observe the evolution of prices for some period of time before the volatility estimate will update to reflect
true future uncertainty.

The second approach for estimating volatility is derived from the asset pricing literature, originating with
Black and Scholes (1973) and Merton (1974) as the basis of real options theory (RTO). These approaches rely on
the fact that under a no-arbitrage condition, the price of certain derivative financial instruments, often options
contracts, are a function of the asset price11 and future uncertainty over the asset price. Thus, given information
on asset and options prices, one can compute the implied volatility of future prices of a particular asset pricing
model. The principal advantage to these approaches is that the computed volatility is a market-based expectation
of future price uncertainty and it should incorporate new information as it becomes available. RTO approaches
are used less frequently due to the data requirements. One must have data on both asset prices and the required
derivatives. Further, the derivatives markets must be sufficiently thick that one would expect prices to converge
to their no-arbitrage values.

Our central question is how consumers respond to uncertainty about future operating costs when purchas-
ing a long-lived durable good and we will principally rely on RTO-based forward-looking measures of volatility.
One may be concerned that these measures are complicated to compute and rely on data not readily available to
typical automobile purchasers and, therefore, may be a poor measure of consumers’ beliefs over future fuel price
uncertainty. However, while RTO tools are quite far removed from the everyday experience of most car buyers,
financial analysts do compute and report gasoline implied volatility.12 This information feeds financial news re-
porting, which will inform the general public’s beliefs on future uncertainty. We expect very few individuals can
precisely define their beliefs over the future distribution of prices, but we expect that themajority form heuristics of
future uncertainty which are correlated with implied volatility from financial markets. In related work, Archsmith
and Levin (2025) uses a long-term, nationally representative survey to show evidence suggesting US households’
expectations of future gasoline price changes are correlated with similar implied volatility measures.

11In commodity markets, this is often the futures price of the commodity.
12e.g., Bloomberg Financial provides an oil volatility index derived from the implied volatility of 1-month oil options contracts and the

Chicago Board of Trade computes a similar 30-day volatility index with ticker symbol OVX.
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4.1.2 Measuring Implied Volatility Using Real Options Theory

Our preferred approach for modeling implied volatility uses the asset pricing model of Black (1976), Black and
Scholes (1973) and Merton (1974) or Black-Scholes-Merton (BSM).13 This model assumes that the log price of an
asset follows a Brownian motion with some constant variance (σ), which characterizes future price uncertainty in
this model. Given some value of σ, the forward contract price of a commodity, the risk-free interest rate, and the
strike price and time to maturity of an options contract, this model provides a unique price for that contract. In
our setting, we observe prices and interest rates, then use that information to compute the value of σ they imply.
This value of σ is the implied volatility at any given point in time.

At any given time commodity markets offer a range of options contracts that vary in attributes such as their
strike date, strike price, and type (call or put). The trading volume, or thickness, of each contract can vary sub-
stantially across these details. We want to use as much market data as possible to inform our estimate of implied
volatility while at the same time avoid relying on prices for thinly-traded contracts that may be traded at prices
far away from their no arbitrage price.

With these goals in mind, we estimate σ from NYMEX commodity price data on each trading day as follows.
We first choose a time horizon of either 60 days or 1 year for computing the implied volatility. We identify the
set of contracts with the first strike date on or after the horizon date. We further limit this set of contracts to
American-style call options14 with at least 10 contracts traded on that day. There may be several contracts meeting
these criteria. We compute the value of σ that minimizes the trading volume-weighted root mean squared error of
the actual contract price and the price computed by BSM.This provides a daily market measure of forward-looking
volatility. Much of our empirical analysis uses month or quarterly time units. When we aggregate to coarser time
units, we compute the trading volume-weighted mean across all days in that time unit.15

We have computed implied volatility for both RBOB and WTI. Assuming full pass-through of crude oil input
costs into gasoline prices, implied volatility from each series should be very similar. As we show Appendix B,
for periods in which we are able to compute both implied volatility series, they are strongly correlated. Further
WTI options contracts cover a longer time series and are more thickly traded. Our implied volatility measure is
unitless and is invariant to the underlying asset price. Consequently, our preferred measure of future gasoline
price uncertainty is derived from WTI contracts, however our results are robust to using RBOB volatility instead.

4.2 Estimating Vehicle Demand

To determine the impact of fuel price uncertainty on vehicle choice, we utilize a linear model of vehicle demand,
derived from a nested logit framework (Berry (1994)). The nesting structure relaxes the independence of irrelevant
alternatives property of the standard logit model, allowing for more realistic substitution patterns. To determine
nests, we follow the literature and use vehicle class designations (Goldberg (1995); Verboven (1996)); specifically,

13There are many other asset pricing models. We have selected BSM due to the model’s simplicity, widespread use, and the fact that
uncertainty is characterized by a single parameter which simplifies including uncertainty in our later structural demand model.

14It is well-documented that put options generally transact at a discount relative to prices predicted by BSM, so we limit our primary
analysis to volatility computed using only call options.

15The heaviest trading day for commodity options are typically the final day to trade options on the current front-month as traders
close out existing positions and open new contracts. This day usually dominates each monthly calculation. Because we consider contracts
expiring at least 60 days in the future, none of the prices we use to compute implied volatility are based on contracts that are about to
expire.
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we rely on categorizations of body style from our vehicle sales data.16 The linear specification we employ is

ln sjt − ln s0t = β′Xjt − α1 ln pjt − α2GPMjt × ft − α3GPMjt × σt + ρ ln sj/g(j)t + γ + ϵjt, (9)

where j indexes vehicle models and t indexes markets; markets are defined as a combination of state and quarter-
of-sample. On the left-hand side of the equation, sjt is the vehicle market share and s0t is outside good market
share. The dependent variable, ln sjt − ln s0t, is derived from inverting the nested logit market share equation
(Berry (1994)). On the right-hand side, Xjt is a vector of vehicle characteristics, pjt is vehicle price, GPMjt is
fuel-intensity,17 ft is fuel prices, σt is implied volatility (our measurement of fuel price uncertainty), sj/g(j)t is the
within-nest share of vehicle j, and γ is a vector of market, power type-year, and make-year fixed-effects.

4.2.1 Identification

In Equation 9, we include typical elements of vehicle demand equations, such as vehicle characteristics, prices,
and operating costs as measured through an interaction of fuel intensity and fuel prices (Berry, Levinsohn, and
Pakes (1995)). In addition to market fixed effects, we include power type-year and make-year fixed effects.18 The
former help control for broad changes in vehicle tastes over time, such as the increase in penetration of hybrids and
plug-in hybrids over time. The latter control for changes in brand-specific trends such as deviations in quality of
vehicle brands across time or the entry and exit of makes, such as the spinoff of the Genesis brand from Hyundai.

Conditional on these fixed effects we still note two identification concerns:

Simultaneity of Price: Prices are an equilibrium outcome of supply and demand and present a simultaneity
concern. To identify our price parameter, we employ instrumental variables in the spirit of Berry, Levinsohn,
and Pakes (1995). Here we assume vehicle characteristics, except for price, are exogenous and rely on BLP-style
instruments following their approach. For each vehicle in market t, we calculate the average of characteristics
Xjt and fuel economy across vehicles produced under the same brand and produced under other brands. This
implementation of BLP-style instruments followsVerboven (1996) and avoids instrument collinearity issues created
by using sums of characteristics in conjunction with market fixed effects.

The relationship of these instruments to prices stems from their effect on supply-side markups. Vehicles with
characteristics more similar to others’ will be more substitutable than vehicles with less similar characteristics, and
will command lower markups (Berry, Levinsohn, and Pakes (1995)).

UnobservedMacroeconomic Confounders: A second concern is that fuel price levels (ft) and future uncertainty
(σt) may be correlated with unobserved macroeconomic factors influencing automobile purchase behavior. We
address this using two approaches. First, we note that fuel price uncertainty does not have a uniform impact across
all vehicles on operating cost uncertainty. As fuel price uncertainty increases, uncertainty in the operating costs of
more fuel intensive vehicles (i.e., less fuel efficient) will increase more than the uncertainty in operating costs for
less fuel intensive (i.e., more fuel efficient). To account for this, we interact fuel intensity with σt. This interaction
measures the exposure of each vehicle’s operating costs to fuel price volatility and allows us to capture both the

16The IHS data categorizes vehicles into 9 body-styles: convertible, coupe, hatchback, passenger vans, pickups, sedan, sport utility, station
wagon, and van.

17Fuel-intensity is measured as the inverse of fuel-efficiency, as measured in miles-per-gallon.
18Power types categorize vehicles by engine technology; categories include gasoline, diesel, hybrid, and plug-in hybrid.
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impact changes in fuel price uncertainty have on demand, as well as its heterogeneous impact across vehicles.
Likewise, we capture a particular vehicle j’s operating cost exposure to the level of fuel prices by interacting fuel
prices with fuel intensity. This is is a common approach to capture the impacts of gasoline prices on vehicle sales
(e.g., Klier and Linn (2010)).

An additional identification concern of fuel price uncertainty stems from the potential for omitted variable
bias. For example, oil market shocks that drive variation in σt may reflect broader economic shocks, which if
uncontrolled for would lead to biased parameter estimates. This issue is addressed through market fixed-effects,
which capture idiosyncratic economic shocks occurring at the state-quarter of sample level. Analysis presented in
the Appendix B shows fuel prices, future fuel price uncertainty, and general macroeconomic uncertainty measured
by CBOE VIX Index (VIX) all exhibit substantial independent time-series variation.

4.3 Interpreting the Demand Model

The model in Section 2.1 provides a theoretical basis for how uncertainty in future gasoline prices may impact
consumers’ vehicle purchase decisions, while in Section 4.2 we propose a method of estimating these impacts on
automobile demand. Here, we connect the theoretical model to our empirical specification by deriving MWTPg
from parameters in our demand model.

To do so, we use three parameters from our estimating equation (Equation 9). The parameters from our nested
logit specification can be interpreted as parameters for the mean utility that consumers derive from vehicles. Here,
the parameter on log price (α1) is the own-price elasticity of demand. Next, taking the derivative of this equation
with respect the vehicle fuel intensity (GPMjt) then dividing by α1 yields:

MWTPg =
∂pit

∂GPMjt
=

α2

α1
ft · pit +

α3

α1
σt · pit (10)

Recall from Equation 8 the MWTPg can be decomposed into two components. Comparing to this equation,
you can see α2

α1
will capture the fuel intensity (GPM)-vehicle price semielasticity assuming fuel prices remain

constant at their current level with certainty. α3
α1

is future fuel price variance (σ)-vehicle price semielasticity. This
variance in the distribution of potential future fuel prices is precisely our measure of uncertainty.

In this model, consumers have a distaste for future operating costs andwe expect the sign onα2 to be negative.
Following from results in Section 2, if consumers are risk neutral, we would expect α3 to be zero but negative for
risk averse consumers.

5 Results

Now we turn to estimating the impacts of future price uncertainty on consumers’ preferences for purchasing
new automobiles, following the demand model presented in Section 4.2. We first estimate the demand model,
demonstrate its robustness to our modeling choices, and then discuss implications for vehicle choice and WTP for
fuel economy when future fuel prices are uncertain.

5.1 Results from Primary Specification

Results from our primary regression are presented in Table 2. Column (1) presents our baseline regression, which
does not include parameters related fuel price volatility. Column (2) presents our preferred specification, which
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includes an interaction between fuel intensity and the implied volatility 2-monthWTI futures. Column (3) replaces
this implied volatility with that of 12-monthWTI futures, and Column (4) utilizes the implied volatility of 2-month
RBOB futures.19

Across all specifications, all coefficient estimates are highly significant and of similar magnitudes. Estimates
of distaste for log price, α, range between -4.1 and -4.2 and imply an own-price elasticity of roughly -4.1. This
range is consistent with other estimates from the literature,20 and implies that consumer are price sensitive, as
expected. The coefficient on the interaction between fuel intensity and fuel prices ranges between -14.9 and -16.3,
implying consumers prefer vehicles with lower operating costs. Importantly, parameter estimates for this variable
are robust to the inclusion of our volatility terms.

The parameter estimates on the volatility interaction term, GPM× Vol, are our primary parameters of interest.
By interacting fuel intensity with volatility, we can measure the exposure of each vehicle’s operating costs to fuel
price volatility. Given a value of volatility, the interaction term increases as fuel intensity increases; in other words,
less fuel efficient vehicles will have a larger exposure to operating costs than more fuel efficient vehicles.

Estimates of this parameter are all negative and significant. First, this indicates that increases in fuel price
volatility have a negative impact on vehicle demand, overall. Using the parameter estimate from column (2), a
standard deviation increase in volatility would translate to a roughly 6.8% decrease in vehicle sales. Second, these
estimates imply differential effects across the distribution of vehicle fuel intensities. For example, if we partial the
sample by within-market fuel efficiency quartile, sales would decline by 9.4% for the least fuel efficient vehicles,
while declining 6.1% for the most efficient vehicles. These effects on vehicle sales are large, but represent the
concurrent response to changes in future uncertainty in automobiles. Just as in Gowrisankaran and Rysman (2012),
we anticipate over longer horizons the impact on sales would be more muted.

While the estimates for the parameter in columns (2) and (4) are quite similar, the estimate in column (3) is
notably lower in magnitude. This is likely due to the time-horizon of the implied volatility measurements; columns
(2) and (4) utilize measures of 2-month implied volatility, while column (3) utilizes 1-year implied volatility. The
difference in magnitudes between the two time-horizons suggests that consumers are either more aware of or more
concerned with short-term uncertainty in fuel prices than with long-term uncertainty fuel prices.

[Table 2 about here.]

These results are broadly consistent with predictions from the model in Section 2. Here, consumers clearly
respond to both the current level and future uncertainty in gasoline prices. Increased uncertainty in future gasoline
prices leads consumers to purchase, on average, more fuel efficient vehicles. Uncertainty also impacts the extensive
margin, reducing the total volume of vehicles sold. These results are inconsistent with consumer beliefs that
either future gasoline prices will be identical to the current price or that they follow a random walk with constant
variance. If that were the case, we would expect to see virtually no impact from future uncertainty in gasoline
prices on vehicle sales.

19Across the specifications including interactions of GPM and implied volatility there is little difference in the parameter estimates. The
underlying WTI options data are most thickly-traded for options contracts in the 2-month horizon, leading to the most precise estimates of
implied volatility using the 2-month measure. Consequently, we prefer this specification (Column (2)) and employ these estimates as the
basis of the simulations and counteractuals that follow.

20Berry, Levinsohn, and Pakes (1995) presents price elasticities between -4 and -7, while Goldberg (1998) estimates an average price
elasticties of -3.1.

13



5.2 Robustness Checks

To test the impact of modeling choices on our parameter estimates, we perform robustness checks examining the
impact of nest designations and fixed effect choices. Results from these robustness checks are presented in Table
(3).

Columns (1) to (3) examine alternative nesting structures. Column (1) removes nests, column (2) separates
nests by luxury designations, and column (3) combines convertibles, coupes, hatchbacks, and station wagons.
Adjusting the nest specifications in columns (1) to (3) affects the magnitude of coefficient estimates, but results
are still qualitatively the same. Coefficients on log price are similar to our primary estimates, falling between -3.3
and -5.1. Coefficients for the fuel price uncertainty interaction term are less consistent, ranging from -5.0 to -32.0.
These imply a range of 1.7% to 10.7% decrease in vehicle demand from a standard deviation increase in volatility.

In column (4), we use the same nesting structure as in our primary specification and relax themarket level fixed
effects to a state-year levels and observe a GPM× Vol coefficient of -34.6, which implies that a standard deviation
increase in volatility would result in a 11.5% decrease in vehicle sales. Because we have relaxed the market fixed
effects, we can also include contemporaneous economic indicators as additional controls. To that end, in column
(5), we add an uninteracted volatility term, as well as the VIX, which measures stock market volatility. While the
coefficient on our volatility term is positive, the combined effects of the volatility term and its interaction term
imply that a standard deviation increase results in 10.9% reduction in vehicle sales, which is consistent with the
results of the specification in column (4).

[Table 3 about here.]

[Table 4 about here.]

5.3 Implications for the Willingness to Pay for Fuel Economy

Our results show that automobile purchasers place a substantial premium on fuel economy when future price
uncertainty is high, independent of the central expectation of future prices. There is a schism in literature esti-
mating consumers’ WTP for fuel economy, with some finding marginal valuation of fuel economy in line with
expected present value discounted costs savings (“full valuation”) versus other research showing marginal valua-
tion less than those same cost savings (“myopia”). One may naturally ask whether omitting the future fuel price
uncertainty effect explains some or all of the observed myopia.

In our demand model excluding the uncertainty effect (Column 1 of Table 2), which mirrors many demand
models estimating WTP for fuel economy, one can compute the operating cost to price elasticity as

ϵDPM =
α2

α1
×GPMit × ft (11)

This is the percent change in vehicle price a consumer would be willing to exchange for a one percent reduction in
operating costs. Assuming a vehicle price, fuel consumption, and current gasoline price, one could translate this to
the level effect – the marginal WTP for a one MPG increase in fuel efficiency. If this value is less than the present
value of reduced operating expenses from a 1 MPG improvement in fuel economy, the vehicle purchaser would be
considered myopic.21

21For example, Allcott and Wozny (2014) find vehicle prices are consistent with car buyers valuing a $1.00 reduction in operating costs
at $0.76.
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In Table 5 we perform this calculation for the three most commonly purchased vehicle classes during our
sample period: sedans, pickups, and sport utility vehicles. For each vehicle class we compute the national sales-
weighted median vehicle price and fuel economy rating in each quarter and match this to mean gasoline price
and implied volatility. We first compute the marginal change in present value of fuel cost savings for a marginal
improvement in fuel economy assuming: future gasoline prices remain constant at the price at the time of vehicle
purchase, vehicles are driven 15,000 miles per year, vehicles have a lifetime of 16.5 years22, and consumers discount
future cost savings at a rate identical to the return on 10-year US Treasury Bonds at the time of purchase. We then
compute the implied marginal willingness to pay for a MPG on the same median vehicles using estimates from our
demand model. Specifically, we assume vehicle j has a price and fuel-intensity identical to the median values of
all vehicles of a particular class sold in quarter t. We then compute the total WTP for fuel economy implied by the
demand model23

exp [ln pjt + (α2 ×GPMjt × ft + α3 ×GPMjt × σt) /α1] (12)

And finally compute themarginalWTP for a unit change inMPGusing the centered finite difference.24 Wecompute
this WTP under two scenarios: First, assuming consumers have no response to uncertainty following Column 1
of Table 2 (“WTP no Vol”) and second using our preferred estimates including a volatility response from Column
2 of the same table (“WTP /w Vol”). We compare the present value fuel cost savings with these WTPs in Table 5.

The simulation summarized in Table 5 computes values for each quarter from 2010Q1 through 2019Q4 and
shows the mean value followed by the interquartile range in brackets. The first three row sets show the present
discounted cost savings of a marginal 1 MPG improvement in fuel economy, the marginal WTP for a 1 MPG
improvement in fuel economy from our demandmodel without uncertainty effects, and finally our preferred model
with uncertainty effects. It is important to note here that there is substantial variation in both WTP for and the
NPV of marginal improvements in fuel economy, both across time and across vehicle classes. Second, empirical
estimates that do not account for future price uncertainty understate WTP for fuel economy relative to models
that do.

The next two row sets show the over- or under-valuation of marginal fuel economy improvements relative to
the present value cost savings from models excluding or including future fuel price uncertainty effects. Consistent
with some literature showing consumer myopia, sedan and sport utility buyers undervalue fuel economy, however
pickup buyers overvalue fuel economy relative to the cost savings. The final row shows the ratio of WTP from
our demand model including uncertainty effects to the model excluding them. Across the board, we see failing to
account for the uncertainty effect understates WTP for fuel economy by approximately 9%.

[Table 5 about here.]

Present value fuel cost savings and WTP for fuel economy improvement vary over time as vehicle prices,
vehicle fuel efficiency, gasoline prices, implied volatility, and interest rates change. Figure 1 shows the time series

22Annual VMT and vehicle lifetime are drawn from assumptions used by the Environmental Protection Agency (EPA) in modeling
benefits and costs of policies such as CAFE. The purchaser may not own the vehicle for its full lifetime, but should be able to capitalize fuel
efficiency benefits into any future resale price.

23Recall α1 is the parameter on log price, α2 the parameter on the fuel intensity-gasoline price interaction, and α3 the parameter on
the fuel intensity-implied volatility interaction. pjt is the vehicle price, ft is the price of gasoline, and σt is the implied volatility. In the
demand model excluding uncertainty effects α3 is zero.

24To denominate the marginal WTP in MPG terms, we perturbGPM as 1/(1/GPM ± δ).
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of present value cost savings (black), WTP ignoring volatility (orange), or including volatility (blue) from 2010
through 2019 for sedans, pickups, and SUVs. Across the time series, sedan purchasers exhibit undervaluation
whereas pickup purchasers exhibit overvaluation, but the overvaluation effect is largest from 2011 to 2013 – a
period of relatively high price and volatility levels.

[Figure 1 about here.]

6 Applications

From the empirical estimates presented in Section 5 it is clear future uncertainty is an economically-significant
impact on the valuation of fuel economy in new car purchases. This begs the question: What implications does
this have for policy? Clearly, uncertainty results in a disutility for consumers and they could be made explicitly
better off by reducing the level of uncertainty in future gasoline prices. Reducing uncertainty, however, would
induce consumers to purchase less efficient vehicles, which runs counter to the goals of both energy and climate
policy in transportation. In this section we explore the impacts consumer distaste for operating cost uncertainty
may have for typical climate policy.

6.1 Prices vs. Quantities in Climate Regulation

Economists often consider price-based (emissions taxes) or quantity-based instruments (e.g., cap-and-trade) for the
regulation of externalities such as GHG emissions. Absent uncertainty, one achieves identical first-best outcomes
either when the regulator uses an optimal price instrument (e.g., an emissions fee with the price set to marginal
damages at the social optimum) or an optimal quantity instrument (e.g., an emissions cap-and-trade with the cap
set at the socially optimal quantity). Weitzman (1974), however, notes that when the marginal cost of compliance
is uncertain from the perspective of the regulator, both approaches will have deadweight loss in expectation and
the ex ante preferred instrument depends on the elasticity of the marginal damages function.

Consumer responses to uncertainty introduce an additional complication to this prices-versus-quantities com-
parison. Under a price-based instrument future compliance costs are fixed and known. With a quantitymechanism,
future compliance costs are uncertain as they depend on the marginal cost of abatement for the final unit required
to meet the cap. There is strong evidence that taxes and regulatory fees are fully passed through into gasoline
prices. For example, EU-ETS emissions allowance are completely passed through to gasoline prices (Alexeeva-
Talebi (2011)). In the US, gasoline tax increases Doyle and Samphantharak (2008) and RIN credit costs – an ethanol
production mandate with tradable compliance – (Knittel, Meiselman, and Stock (2017)) are fully passed through
into gasoline prices. As such, the uncertainty in future compliance costs under a quantity instrument should also
pass through into future gasoline price uncertainty. Given our results, this implies automobile consumers will
respond differently to price and quantity instruments due to the latter’s uncertain impact on future prices, even
when both have identical future compliance costs in expectation.

To investigate the magnitude of these effects we conduct a simulation using parameters from our preferred
demand model, comparing the preference for fuel economy and the set of vehicles purchased under a price-based
instrument (which raises gasoline prices but not future uncertainty) and a quantity-based instrument (which in-
creases both gasoline prices and uncertainty over future prices). This simulation will project counterfactual GHG
pricing policies on US automobile purchases during our sample period. There are myriad possible policy designs
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and here we will focus on two specific hypothetical policies that highlight the welfare impacts of a price instrument
versus an cost-equivalent quantity instrument.

6.1.1 Uncertainty in Emissions Compliance Costs

Constructing this counterfactual requires we take a stand on how a quantity-based carbon regulation would impact
future gasoline price uncertainty. Carbon cap-and-trade programs exist in the US but markets for allowances clear
infrequently and do not make a setting amenable to computing future uncertainty in allowance prices.

As an alternative, we assume regulation identical to the EU-ETS, a comprehensive carbon cap-and-trade im-
plemented in the European Union starting in 2005, in both prices and uncertainty over future prices. In the EU-ETS,
allowances are sold at national auctions, but futures and options contracts on emissions allowances are traded on
the Eurex commodities exchange. Using data on these contract transactions we compute the implied volatility of
EU-ETS emissions futures during our sample period of 2010 to 2019.25

Consistent with the empirical evidence outlined above, we assume full pass-through of EU-ETS compliance
costs into gasoline prices. Consumption of one gallon of gasoline requires remitting 8.887 kg of CO2 allowances.26

Thus, under a quantity-based regulation with allowance price of pCO2 in $
ton and baseline gasoline price fG, one

would expect the counterfactual price of gasoline inclusive of compliance costs (fGQ) to be

fGQ = fG +
8.887

1000
· pCO2

Computing the implied volatility inclusive of compliance costs is more complicated. Shocks to future oil and
emissions allowance prices may be correlated. Thus the volatility of oil prices inclusive of compliance costs will
also depend on the correlation in those shocks. Recall, consistent with the BSM asset pricing model, our measure
of volatility is the variance of the Brownian motion in log asset returns. Let retO and retCO2 be the ratio of a
future price to the current price of oil and emissions allowances, respectively. Then the implied volatility of oil
prices inclusive of compliance costs is27

σOG = σO + (0.43)2 · σCO2 + 2 · 0.43 · Cov
(
ln(retO), ln(retCO2)

)
Using historical data on WTI and EU-ETS emissions allowance prices, we compute the covariance their log

returns in rolling 3-year windows. In practice, the covariance small, ranging from approximately zero to 0.03
during our sample period.

Next, using realized EU-ETS emissions allowance prices and our estimates of the implied volatility in those
prices, we compute counterfactual gasoline prices and crude oil implied volatility under two scenarios:

Quantity Instrument: We assume during our sample period the US implemented a CO2 cap-and-trade program
with emissions allowance prices and uncertainty identical to what was observed in the EU-ETS over the same
period. This requires we adjust gasoline prices for the level of the emissions allowance price and crude oil implied

25We were able to obtain options contract data beginning in April 2010, so we are unable to include the the 2010Q1 in the following
analysis.

26This is the US EPA’s current gasoline to CO2 conversion factor. See https://www.epa.gov/greenvehicles/
greenhouse-gas-emissions-typical-passenger-vehicle Accessed on 04 November 2024.

27The US EPA conversion factor for oil is 0.43 ton CO2/bbl. See https://www.epa.gov/energy/
greenhouse-gases-equivalencies-calculator-calculations-and-references.
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volatility for the future uncertainty in allowance prices.

Price Instrument: We assume during our sample period the US implemented a CO2 emissions fee with a pre-
determined schedule of identical to realized EU-ETS allowance price from 2010 to 2019. Applying the counterfac-
tual price instrument requires we adjust gasoline prices for the level of the emissions fee, but since the fee schedule
increases deterministically, there is no impact on the implied volatility of crude oil.

Time series of the baseline and counterfactual prices and volatility are shown in Figure 2. For much of the
sample gasoline prices are virtually identical to their baseline values under either instrument. There is, however, a
persistent increase in the implied volatility of oil prices throughout our sample period.

[Figure 2 about here.]

6.1.2 Counterfactual Scenarios

Using our preferred demand specification, we calculate sales in each quarter28 under a baseline scenario and two
counterfactual scenarios. The baseline scenario uses observed gasoline prices and implied volatility, while the
counterfactual scenarios use prices and implied volatility calculated under the quantity and price instruments.

In Table 6, we provide results from our counterfactual scenarios across all years, focusing on the impact of
policy instruments on total sales and sales-weighted average fuel economy. Columns (1) and (2) provide sales
and fuel economy in the baseline scenario, while columns (3) and (4), and columns (5) and (6) provide percentage
changes to sales and fuel economy under the price and quantity instruments, respectively.

[Table 6 about here.]

Across all years, under our price instrument, we find a 6.4% reduction in total vehicle sales and a 0.5% increase
in average fuel economy. Under our quantity instrument, we find a 14.6% reduction in total vehicle sales and a
1.2% increase in average fuel economy. These results are consistent with our model’s predictions, as the quantity
instrument increases fuel price uncertainty, in addition to fuel prices, while the price instrument only affects prices.

In our counterfactual, compliance costs and future price uncertainty vary over time, and aggregating over our
sample period masks some important variation. We plot the time series of vehicle sales (Figure 3) and mean MPG
(Figure 4) across all vehicles and the three most commonly-sold vehicle classes: sedans, pickups, and SUVs. Sales
are consistently lower across vehicle classes, with the largest effects over time in pickups and SUVs, particularly
in the latter half of the 2010s when future price uncertainty was high. Looking at all vehicles, changes in fuel
economy are most pronounced under the quantity instrument during periods of high future price uncertainty,
where the quantity instrument may induce mean fuel economy improvements in excess of 0.5 MPG. In contrast,
neither policy instrument induces significant changes in fuel economy within vehicle classes. This highlights that
the channel for the predicted improvement in average fuel economy is mostly driven by a shift from fuel-inefficient
vehicle classes, such as pickups and SUVs, to more efficient body styles.

[Figure 3 about here.]

[Figure 4 about here.]
28Our counterfactual scenarios cover the period from Q2 2010 through Q4 2019.
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To further examine the heterogeneous effects of the policy instruments across vehicle classes (which form
the nests in our demand model), we look at counterfactual results in 2015 and 2019, presented in Table 7. The
single-year decomposition allows us to see the impact of the policy instruments, without concern about changes
to the composition of nests. In line with expectations, nests with more fuel efficient vehicles experience smaller
declines in sales than nests with less fuel efficient vehicles.

[Table 7 about here.]

6.2 Policy Implications

Our counterfactual results suggests that the choice of price-based or quantity-based instruments has a significant
impact on consumer purchase behavior. Because quantity-based instruments increase fuel price uncertainty, in
addition to fuel prices, they depress vehicle sales more than price-based instruments. However, the increased
uncertainty also drives consumers toward more fuel efficient vehicles.

The welfare impacts of these results are largely dependent on the pricing of carbon emissions relative to the
social optimum. If carbon emissions are priced at their marginal damages, then consumers will be unequivocally
worse off under quantity-based policies than under price-based policy. The increased uncertainty will reduce
their ability to optimize their vehicle holdings, leading them to forgo purchases and over-invest in fuel efficiency.
Because emissions are properly priced at their marginal damages, this reduction in consumer welfare will not be
offset by overall social welfare gains.

Might we prefer a quantity-based instrument if carbon emissions are under-priced? While the increased
uncertainty will still depress sales, it will simultaneously improve average fuel economy. In this case, losses to
consumer welfare may be offset by gains in social welfare from reduced emissions. However, more fuel efficient
vehicles are less expensive to drive – which may induce more driving under the quantity instrument, offsetting
the emissions benefits of increased efficiency. In Appendix C.3, we simulate lifetime vehicle gasoline consumption
under these policy scenarios. If the VMT is not responsive to operating costs, gasoline consumption is always lower
under the quantity instrument. If driving increases in response to lower operating costs,29 however, gasoline
consumption is similar to or lower under the price instrument. This highlights that the additional uncertainty
in future gasoline prices introduced by the quantity instrument is quite likely welfare-reducing, even when the
externality is underpriced.

7 Conclusions

This paper considers how consumers’ expectations of future gasoline prices impact their automobile purchase
decisions. We find consumers vehicle purchases are inconsistent with the assumption that they believe future
gasoline prices will be identical to the current price. In particular, as market measures of the uncertainty over
future prices increase, consumers’ WTP for fuel economy increases. This effect is economically significant in
magnitude, a 1-standard deviation increase in uncertainty increases the WTP for 1 MPG by approximately $89
or 10.0%. This effect shifts vehicle choice amongst new car buyers when future uncertainty is large. That same
increase in future price uncertainty increases the fuel efficiency of new vehicle purchases 0.5%, mostly through
buyers choosing cars and crossovers over pickups and SUVs. Vehicle operating costs are a disamenity, however,
and increased fuel price uncertainty has a net effect of reducing overall vehicle demand.

29Again, following Archsmith, Gillingham, et al. (2020) we assume a operating cost-VMT elasticity of -0.45.
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These results demonstrate that consumers take a much more complicated view of future gasoline costs when
purchasing an automobile than has been previously assumed in the literature. Examining stated beliefs in a nation-
ally representative survey, consumers anticipate price changes implied by futures markets, expect mean reversion
in spot prices, and incorporate future uncertainty in the realizations of prices, all contrary with beliefs that prices
follow a random walk. This aligns with evidence from Archsmith and Levin (2025) who show consumer’s stated
beliefs over future gasoline prices begin to deviate from a no-change expectation in the leadup to the financial
crisis of 2008, when changes to the time series of oil prices caused returns to paying attention to future prices and
uncertainty substantially increased.

These results have implications for applying carbon pricing, or any other tradable compliance regulation, to
transportation fuels. Quantity-based instruments, such as a carbon cap-and-trade, have uncertain future costs of
compliance which necessarily introduces additional uncertainty in future gasoline costs, shifting consumer pref-
erences for vehicles relative to a price instrument. These effects are non-trivial. Uncertainty in future compliance
costs under a quantity-based GHG regulation similar to the EU-ETS substantially reduces overall vehicle demand
relative to a policy with identical emissions prices that are known in advance with certainty. Effects on fuel ef-
ficiency of vehicle purchased are more muted, with much of the effect driven by sales shifting from pickups and
SUVs to more efficient sedans and crossovers. It is important to note that, assuming an ex ante optimal policy, these
improvements in fuel economy under a quantity instrument are not welfare-improving. Additional uncertainty
alters vehicle choice and the decision to replace a vehicle, reducing welfare over an alternative policy that does
not introduce additional uncertainty. Further, consumers are induced to purchase more fuel-efficient vehicles than
they would otherwise, increasing the amount they choose to drive after purchasing the vehicle.

In contrast to previous literature examining durables and energy efficiency (e.g., Greene (2011)) who find un-
certainty over the level of energy efficiency reduces the WTP for improved efficiency, we find uncertainty over
the cost of energy increases WTP for improved efficiency. This may have implications beyond gasoline-powered
automobiles. As an example, the lack of reliable electric vehicle charging infrastructure has been identified as an
impediment to more widespread EV adoption (Zhou and Li (2018)). Lack of accessible charging may increase the
utility or time cost of charging an EV. The future stock of EV chargers is uncertain due to the dynamic interde-
pendence between EV adoption and charging station buildout, uncertainty around future policy promoting new
charging station construction, and many other reasons. Uncertainty in the hassle costs of charging may have sim-
ilar impacts on EV demand as uncertainty in fuel costs have on fuel-inefficient vehicle demand, and may explain
the strong preference for range in new EVs and further present an additional barrier to EV adoption.
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FiguRes

Figure 1: Simulated WTP for a 1 MPG Improvement in Fuel Efficiency
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Simulation of the WTP for a one dollar reduction in present discounted lifetime operating costs for the sales-weighted median price and
fuel efficiency vehicle, using historical gasoline prices and implied volatility. Panels (a), (b), and (c) show sedans, pickups, and SUVs,
respectively. Vehicles are assumed to be driven 15,000 miles per year and last 16.5 years. The black line shows the present discounted
cost savings of a 1 MPG improvement in fuel economy. The blue line performs the calculation using a model excluding the uncertainty

effect (Column 1 of Table 2). The orange line uses our preferred model, including the volatility effect (Column 2 of Table 2).
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Figure 2: Counterfactual Price and Implied Volatility under Price orQuantity Instruments
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Time series plots of the counterfactual price of gasoline (Panel (a)) and implied volatility of crude oil (Panel (b)) assuming a quantity
instrument with allowance prices and future uncertainty identical to the EU-ETS during the same period or a price instrument with
prices set identically to the realized EU-ETS allowance prices with certainty. Calculation of counterfactual prices and volatility

described in Section 6.1.1. Realized compliance costs are assumed identical under the Price andQuantity instruments, thus gasoline
prices are identical under these instruments in Panel (a). Allowance prices under the price instrument are known with certainty and do

not impact implied volatility, hence the Baseline and Price Instrument implied volatility in Panel (b) are identical.

25



Figure 3: Sales Under Baseline and Counterfactual Scenarios
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Sales of vehicles under baseline and counterfactual scenarios. Baseline (black) uses observed gasoline prices and future volatility. PI
(blue) imposes a price instrument for GHG regulation with prices identical to the EU-ETS. QI (red) imposes a quantity instrument for

GHG regulation with prices and additional future uncertainty identical to the EU-ETS. Panels (a), (b), (c), and (d) show sales for vehicles,
sedans, pickups, and SUVs, respectively.
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Figure 4: Average Fuel Economy Under Baseline and Counterfactual Scenarios
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Average fuel economy of vehicles under baseline and counterfactual scenarios. Baseline (black) uses observed gasoline prices and future
volatility. PI (blue) imposes a price instrument for GHG regulation with prices identical to the EU-ETS. QI (red) imposes a quantity
instrument for GHG regulation with prices and additional future uncertainty identical to the EU-ETS. Panels (a), (b), (c), and (d) show

sales for vehicles, sedans, pickups, and SUVs, respectively. Values presented are sales-weighted averages.
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Tables

Table 1: Summary Statistics for Commodities Futures and Options Data

WTI RBOB
$/bbl $/gal
(1) (2)

Futures
1m Forward Price 63.66 2.15

(25.61) (0.623)
Daily Volume 277,823 40,753

(216,495) (23,205)
First Date 1999-12-23 2005-12-01
Last Date 2024-09-23 2024-09-23

Options
1m Forward Price 5.76 0.109

(9.96) (0.178)
Daily Volume 230.9 6.45

(832.8) (49.04)
First Date 2003-11-18 2006-08-29
Last Date 2024-09-23 2024-09-13

Summary statistics for commodity options and futures data. Data limited to front-month contracts.
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Table 2: Nested Logit Model of Vehicle Demand: Primary Results

Dependent Variable: ln sjt − ln s0t
Base 2-Month Vol (WTI) 1-Year Vol (WTI) 2-Month Vol (RBOB)

Model: (1) (2) (3) (4)

ln Price -4.107∗∗∗ -4.111∗∗∗ -4.187∗∗∗ -4.097∗∗∗
(0.1794) (0.1792) (0.1795) (0.1791)

GPM x PriceFuel -16.32∗∗∗ -14.93∗∗∗ -15.75∗∗∗ -14.85∗∗∗
(0.2706) (0.3350) (0.3761) (0.3483)

GPM × Vol -19.98∗∗∗ -8.686∗∗ -21.15∗∗∗
(2.686) (3.531) (2.956)

ln Nest Share 0.4154∗∗∗ 0.4155∗∗∗ 0.4169∗∗∗ 0.4153∗∗∗
(0.0111) (0.0111) (0.0110) (0.0111)

HP/Weight 9.932∗∗∗ 10.03∗∗∗ 10.36∗∗∗ 9.936∗∗∗
(1.540) (1.546) (1.541) (1.544)

HP 0.0061∗∗∗ 0.0062∗∗∗ 0.0063∗∗∗ 0.0062∗∗∗
(0.0003) (0.0003) (0.0003) (0.0003)

Tons 3.212∗∗∗ 3.239∗∗∗ 3.260∗∗∗ 3.232∗∗∗
(0.1022) (0.1022) (0.1021) (0.1022)

Wheelbase -0.0006 -0.0006 -0.0011 -0.0006
(0.0009) (0.0009) (0.0010) (0.0009)

Fixed-effects
State-QoS Yes Yes Yes Yes
Power Type-Year Yes Yes Yes Yes
Make-Year Yes Yes Yes Yes

std. dev. SIGMA N/A 0.08568 0.05675 0.06982
Observations 720,885 720,885 720,885 720,885
R2 0.58898 0.58895 0.58623 0.58944
Within R2 0.31533 0.31528 0.31075 0.31610
F-test (1st stage), ln Price 185.72 185.70 185.94 185.68
F-test (1st stage), ln Nest Share 501.21 492.84 496.08 492.68

Clustered (State-QoS) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Nests are defined by body types defined in IHS vehicle specifications. Regressions cover sales from
Q1 2010 through Q4 2019. Mean characteristics of other vehicles produced by firm and mean charac-
teristics of vehicles produced by rival firms are used to instrument for log(Price) and log(Nest Share).
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Table 3: Nested Logit Model of Vehicle Demand: Primary Results: Robustness

Dependent Variables: ln sjt − ln s0t
No Nests Alternative Nests 1 Alternative Nests 2 Alternative FEs 1 Alternative FEs 2

Model: (1) (2) (3) (4) (5)

ln Price -4.130∗∗∗ -3.276∗∗∗ -5.112∗∗∗ -3.623∗∗∗ -3.608∗∗∗
(0.2429) (0.2247) (0.1534) (0.3024) (0.3034)

GPM x PriceFuel -18.76∗∗∗ -15.90∗∗∗ -9.818∗∗∗ -9.804∗∗∗ -8.660∗∗∗
(0.3911) (0.3985) (0.2969) (0.3367) (0.4326)

GPM × Vol -31.99∗∗∗ -23.46∗∗∗ -4.993∗∗ -34.60∗∗∗ -52.70∗∗∗
(3.563) (3.018) (2.247) (1.328) (3.150)

ln Nest Share 0.2387∗∗∗ 0.9246∗∗∗ 0.5124∗∗∗ 0.5043∗∗∗
(0.0154) (0.0129) (0.0218) (0.0222)

HP/Weight 38.14∗∗∗ 18.67∗∗∗ 15.00∗∗∗ -1.053 -0.5266
(1.616) (1.999) (1.080) (2.668) (2.719)

HP -0.0015∗∗∗ 0.0011∗∗∗ 0.0137∗∗∗ 0.0075∗∗∗ 0.0073∗∗∗
(0.0004) (0.0004) (0.0003) (0.0006) (0.0006)

Tons 3.781∗∗∗ 3.088∗∗∗ 2.797∗∗∗ 2.710∗∗∗ 2.737∗∗∗
(0.1300) (0.1284) (0.0861) (0.1675) (0.1695)

Wheelbase 0.0133∗∗∗ 0.0086∗∗∗ -0.0639∗∗∗ -0.0014 -0.0011
(0.0013) (0.0012) (0.0013) (0.0016) (0.0016)

Vol 0.8367∗∗∗
(0.1652)

VIX 0.0060∗∗∗
(0.0012)

Fixed-effects
State-QoS Yes Yes Yes
Power Type-Year Yes Yes Yes Yes Yes
Make-Year Yes Yes Yes Yes Yes
State-Year Yes Yes

std. dev. SIGMA 0.08568 0.08568 0.08568 0.08568 0.08568
Observations 720,885 720,885 720,885 720,885 720,885
R2 0.43186 0.57433 0.72518 0.60562 0.60630
Within R2 0.05360 0.29092 0.54222 0.34473 0.34587
F-test (1st stage), ln Price 185.70 185.70 185.70 138.01 136.36
F-test (1st stage), ln Nest Share 374.53 204.76 223.41 219.09

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Nests in column (2) include additional nest designations for luxury convertibles, coupes, hatchbacks, sedans, and wag-
ons. Nests in column (3) combine convertibles, coupes, hatchbacks, sedans, and wagons into a single nest. Nests in
columns(4) and (5) are defined by body types defined in IHS vehicle specifications. Regressions cover sales from Q1
2010 through Q4 2019. Mean characteristics of other vehicles produced by firm and mean characteristics of vehicles
produced by rival firms are used to instrument for log(Price) and log(Nest Share).
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Table 4: Effects from a 1 standard deviation in implied volatility

(a) Impacts Using Preferred Specification and Alternative Specifications

Actual Preferred No Nests Alternative Nests 1

Nest Sales MPG %∆ Sales %∆MPG %∆ Sales %∆MPG %∆ Sales %∆MPG

All Vehicles 120.4 25.2% -6.8% 0.5% -10.7% 0.6% -8.0% 0.5%
Sport Utility 51.3 23.4% -7.2% 0.3% -11.2% 0.3% -8.3% 0.3%
Van 0.3 23.2% -7.1% 0.2% -11.2% 0.2% -8.3% 0.2%
Convertible 1.0 24.1% -6.9% 0.2% -10.8% 0.2% -8.1% 0.2%
Sedan 38.4 29.0% -5.8% 0.2% -9.1% 0.2% -6.7% 0.2%
Coupe 3.6 24.0% -7.0% 0.3% -10.9% 0.3% -8.1% 0.3%
Pickups 15.1 18.0% -9.1% 0.2% -14.2% 0.2% -10.6% 0.2%
Hatchback 5.8 36.7% -4.8% 0.6% -7.6% 0.6% -5.6% 0.5%
Station Wagon 1.6 29.4% -5.7% 0.3% -9.0% 0.3% -6.7% 0.2%
Passenger Vans 3.3 21.6% -7.6% 0.1% -11.9% 0.1% -8.9% 0.1%

(b) Impacts Using Additional Alternative Specifications

Actual Alternative Nests 2 Alternative FEs 1 Alternative FEs 2

Nest Sales MPG %∆ Sales %∆MPG %∆ Sales %∆MPG %∆ Sales %∆MPG

All Vehicles 120.4 25.2% -1.7% 0.7% -11.5% 1.0% -10.9% 1.5%
Sport Utility 51.3 23.4% -1.8% 0.6% -12.0% 0.7% -11.7% 1.0%
Van 0.3 23.2% -1.8% 0.3% -12.0% 0.4% -11.7% 0.6%
Convertible 1.0 24.1% -5.3% 0.5% -11.6% 0.5% -11.1% 0.8%
Sedan 38.4 29.0% -1.5% 0.4% -9.7 % 0.5% -8.2 % 0.7%
Coupe 3.6 24.0% -5.5% 0.6% -11.7% 0.6% -11.2% 1.0%
Pickups 15.1 18.0% -2.4% 0.3% -15.3% 0.4% -16.6% 0.6%
Hatchback 5.8 36.7% 1.8 % 1.1% -8.1 % 1.2% -5.6 % 1.8%
Station Wagon 1.6 29.4% -1.6% 0.6% -9.7 % 0.6% -8.1 % 0.9%
Passenger Vans 3.3 21.6% -2.0% 0.2% -12.8% 0.2% -12.8% 0.4%

The first two columns of this table present total sales and sales-weighted average fuel economy. The remaining columns present the
percentage change in sales and sales-weighted average fuel economy from a 1 standard deviation increase in implied volatility, using

parameters from our estimates in Table 2 and Table 3. The Preferred columns use parameter estimates from column (2) in Table 2, while
the remaining Alternative columns use estimates from the corresponding columns in Table 3.
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Table 5: Impact of Volatility on WTP for and Undervaluation of Fuel Economy

MWTP ($/MPG)
Sedan Pickups Sport Utility All Vehicles

NPV $553.70 $1,518.33 $879.08 $848.48
[$397.44 – $719.28] [$1,001.83 – $2,017.61] [$601.24 – $1,155.94] [$558.30 – $1,072.83]

WTP no Vol $357.27 $1,835.43 $781.08 $811.84
[$220.58 – $476.26] [$1,055.53 – $2,630.89] [$463.83 – $1,034.97] [$384.06 – $1,055.78]

WTP /w Vol $389.03 $2,012.60 $853.62 $888.71
[$257.86 – $490.90] [$1,230.71 – $2,704.80] [$537.19 – $1,054.37] [$432.09 – $1,150.27]

WTP no Vol to NPV -35.48% 20.88% -11.15% -4.32%
[-44.50% – -33.79%] [5.36% – 30.40%] [-22.85% – -10.46%] [-31.21% – -1.59%]

WTP /w Vol to NPV -29.74% 32.55% -2.90% 4.74%
[-35.12% – -31.75%] [22.85% – 34.06%] [-10.65% – -8.79%] [-22.61% – 7.22%]

WTP incr /w Vol 8.89% 9.65% 9.29% 9.47%
[3.07% – 16.90%] [2.81% – 16.60%] [1.87% – 15.82%] [8.95% – 12.51%]

Comparison of the present value savings from marginal 1 MPG improvement in fuel economy against the WTP for that same
improvement in fuel economy from the demand model in Column (2) of Table 2. For each vehicle class, we compute the quarterly
median price and fuel economy and match to mean fuel prices and implied volatility for that quarter. NPVs are computed assuming
vehicles have a lifefime of 16.5 years, are driven 15,000 miles per year, and consumers discount future costs at a rate identical to the
10-year US Treasury bond rate at the time of purchase. NPVs and WTPs vary over time. The mean value is shown in the first row of
each group, with the interquartile range in brackets below. The final three rows compare undervaluation of MPG not accounting for

volatility, undervaluation accounting for volatility, and the percentage increase in the willingness to pay when accounting for volatility.
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Table 6: Percentage Change in Sales and Fuel Economy

Baseline PI QI

Nest Sales (millions) MPG %∆ Sales %∆MPG %∆ Sales %∆MPG
(1) (2) (3) (4) (5) (6)

All Vehicles 118.7 25.2 -6.4% 0.5% -14.6% 1.2%
Convertible 1.0 24.1 -6.4% 0.3% -14.7% 0.6%
Coupe 3.5 24.0 -6.3% 0.3% -14.7% 0.7%
Hatchback 5.7 36.7 -4.4% 0.6% -10.4% 1.3%
Passenger Vans 3.3 21.6 -7.0% 0.1% -16.1% 0.3%
Pickups 14.9 18.0 -8.8% 0.2% -19.5% 0.5%
Sedan 37.8 29.1 -5.2% 0.2% -12.2% 0.5%
Sport Utility 50.7 23.4 -6.9% 0.3% -15.4% 0.8%
Station Wagon 1.6 29.4 -5.7% 0.4% -12.8% 0.7%
Van 0.3 23.2 -6.5% 0.2% -15.0% 0.4%

This table contains the percentage change in sales and sales-weighted fuel economy under three scenarios. Baseline uses observed
gasoline prices and future volatility. PI imposes a price instrument for GHG regulation with prices identical to the EU-ETS. QI imposes a
quantity instrument for GHG regulation with prices and additional future uncertainty identical to the EU-ETS. The counterfactuals

cover Q2 2010 through Q4 2019.
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Table 7: Percentage Change in Sales and Fuel Economy, Select Years

(a) 2015

Baseline PI QI

Nest Sales (millions) MPG %∆ Sales %∆MPG %∆ Sales %∆MPG
(1) (2) (3) (4) (5) (6)

All Vehicles 13.5 25.6 -4.4 % 0.3 % -11.2 % 0.7 %
Convertible 0.1 24.7 -4.4 % 0.1 % -11.3 % 0.4 %
Coupe 0.4 23.7 -4.6 % 0.2 % -11.8 % 0.5 %
Hatchback 0.6 36.9 -3.1 % 0.3 % -8.0 % 0.8 %
Passenger Vans 0.4 21.5 -5.0 % 0.0 % -12.7 % 0.1 %
Pickups 1.6 18.6 -5.8 % 0.1 % -14.6 % 0.2 %
Sedan 4.5 29.5 -3.7 % 0.1 % -9.5 % 0.3 %
Sport Utility 5.6 23.6 -4.7 % 0.2 % -11.8 % 0.5 %
Station Wagon 0.1 31.3 -3.6 % 0.2 % -9.1 % 0.6 %
Van 0.0 24.3 -4.5 % 0.0 % -11.4 % 0.1 %

(b) 2019

Baseline PI QI

Nest Sales (millions) MPG %∆ Sales %∆MPG %∆ Sales %∆MPG
(1) (2) (3) (4) (5) (6)

All Vehicles 12.7 25.8 -12.7 % 0.9 % -19.4 % 1.5 %
Convertible 0.1 25.7 -12.6 % 0.6 % -19.1 % 1.0 %
Coupe 0.2 23.2 -13.8 % 0.6 % -20.9 % 1.0 %
Hatchback 0.4 35.6 -9.5 % 1.0 % -14.6 % 1.7 %
Passenger Vans 0.2 23.4 -13.7 % 0.7 % -20.8 % 1.1 %
Pickups 1.9 19.2 -16.2 % 0.2 % -24.4 % 0.3 %
Sedan 2.7 31.4 -10.3 % 0.6 % -15.9 % 0.9 %
Sport Utility 6.8 24.8 -12.9 % 0.6 % -19.7 % 1.0 %
Station Wagon 0.2 28.3 -11.2 % 0.2 % -17.2 % 0.3 %
Van 0.0 25.1 -12.5 % 0.0 % -19.1 % 0.1 %

This table contains the percentage change in sales and sales-weighted fuel economy for the price policy instrument (PI) and quantity
policy instrument (QI) in 2015 and 2019. In both years, sales for non-passenger vans are fewer than 100,000.
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